
159DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

Contributions to the Efficient and Parallel Jacobian Evaluation
and its Application in OpenModelica

Willi Braun1 Martin Schroschk2 Vitalij Ruge3 Andreas Heuermann1 Bernhard Bachmann1

1University of Applied Sciences Bielefeld, Germany, w-braun@posteo.de,
{bernhard.bachmann,andreas.heuermann}@fh-bielefeld.de

2Center for Information Services and High Performance Computing, TU Dresden, Germany
martin.schroschk@tu-dresden.de

3Siemens AG, Energy Sector, Erlangen, Germany vitalij.ruge@siemens.com

Abstract
Many algorithms related to Modelica-based simulations
heavily rely on the efficient provision of Jacobian ma-
trices. Besides the accuracy of the derivative informa-
tion, the performance of the derivative evaluation is also
of great interest, since it can have a large share in the to-
tal simulation time. In this paper, we propose two com-
plementary approaches basing on identification of con-
stant parts and parallelization to accelerate Jacobian eval-
uation. Furthermore, the implementations of these tech-
niques in the open-source Modelica tool OpenModelica
are discussed. The gained speedup in Jacobian evalua-
tion is demonstrated on benchmark models of the Scal-
ableTestSuite.
Keywords: Jacobian Evaluation, Symbolic Differentia-
tion, Derivatives Computation, Coloring, Sparsity, Paral-
lelization, Modelica, OpenModelica

1 Introduction
Solving computational problems numerically often rely on
the access of derivative information, e.g. Jacobian matri-
ces. In the Modelica context this includes algorithms used
for solving algebraic loops, implicit integration methods
as well as optimization algorithms. Both the speed of the
derivatives generation and their accuracy can have a sig-
nificant impact on such algorithms w.r.t. runtime and ro-
bustness. From a mathematical point of view there are sev-
eral techniques to provide derivatives. A very common nu-
merical method are finite differences, which approximate
derivatives by difference quotients. For implicit integra-
tion methods with stepsize control, like DASSL or Sun-
dials/IDA, the accuracy of the Jacobian is subordinated,
since it is dominated by the current stepsize. The numer-
ical approach using finite differences is very reasonable
for this class of algorithms and therefore default in Open-
Modelica. So accuracy is not an argument for the contrary
symbolic differentiation (cf. (Braun, Gallardo Yances,
Link, and Bachmann 2012)) in case of implicit integra-
tion. But performance might be. The computation time of
the Jacobian matrices can have a major share in the total
simulation time of a model. To emphasize this statement

we consider the model DistributionSystemLinear from the
ScalableTestSuite (Casella 2015): In Table 1 the execution
time for the simulation and Jacobian evaluation using the
symbolical derivative module of OpenModelica, as well
as the total number of Jacobian evaluations over the simu-
lation time is stated for three different model sizes N. The
timings were obtained on an Intel Xeon E5-2680 v3 pro-
cessor using OpenModelica in version 1.12. Since these
models contain one large linear system, which makes the
compression futile, the Jacobian evaluation takes a signif-
icant amount of the total simulation runtime. Therefore,
the right hand side for the Jacobian has to be evaluated
significantly more often. Accelerating the evaluation of
Jacobians would lead to a sizeable reduction of the total
simulation runtime. Furthermore, the Jacobian evaluation
does not make use of the available parallel hardware re-
sources today’s multi-core processors, like the used Intel
Haswell processor, offer. This example serves as a rep-
resentative for models having evaluation expensive right
hand sides which are dominating the large algebraic loop.

Table 1. Timings for overall simulation ttotal and Jacobian
evaluation t jac for sequential execution and the total number of
Jacobian evaluations over a simulation run for three different
model sizes N.

N Dim. of J Evals. of J ttotal [s] t jac [s]

14 196×196 15 3.8 2.7
20 400×400 14 12.7 10.3
28 784×784 15 47.3 41.5

In previous work, it was shown how directional deriva-
tives are computed in OpenModelica within the sym-
bolic derivative module (Braun, Ochel, and Bachmann
2011). These techniques were combined with col-
oring approaches in (Braun, Gallardo Yances, Link,
and Bachmann 2012) and become extensively used by
other algorithms inside of the OpenModelica Com-
piler as for algebraic loops, optimization and FMI (cf.
(Braun and Bachmann 2014), (Ruge and Bachmann
2014), (Åkesson, Braun, Lindholm, and Bachmann 2012),
(Franke, Walther, Worschech, Braun, and Bachmann
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2015)). Algorithms for optimization and solving algebraic
loops strongly rely on fast calculation of accurate deriva-
tives. Therefore, the focus of this paper is on efficient
evaluation of directional derivatives necessary for evaluat-
ing symbolical Jacobians. We present two complementary
techniques to improve the performance of Jacobian evalu-
ation and apply them to the OpenModelica Compiler. The
first technique identifies recurring calculations with con-
stant parts in the directional derivatives. These constant
parts need to be evaluated only once and the results will
be reused in the construction of the Jacobian matrix. The
second approach introduces a parallelization approach for
the Jacobian evaluation and sketches the implementation
in the C simulation runtime of OpenModelica.

The paper is organized as follows: First, the con-
text, generation and evaluation of Jacobian matrices in
Modelica compilers is described in Section 2. Based on
that two complementary techniques to accelerate the Ja-
cobian evaluation are presented in Section 3. In Section 4
the proposed algorithms and improvements are evaluated
using Modelica models. Finally, the presented work is
summarized and an outlook for further improvements is
given.

2 Jacobians in Modelica Models
A Modelica model is typically translated to a basic math-
ematical representation of differential and algebraic equa-
tions (DAEs) and transformed to ordinary differential
equations (ODEs) before being able to simulate the model.
The result of the so-called flattening process is the equa-
tion system

F(x(t), ẋ(t),y(t),u(t), p, t) = 0, t ∈ [t0, t f ]

x(t0) = x0,
(1)

where x(t) ∈ Rnx are the potential states, ẋ(t) ∈ Rnx are
the potential state derivatives, y(t) ∈ Rny are the algebraic
variables and u(t) ∈ Rnu are the inputs. The simulation
time is given by t ∈ [t0, t f ]. For simplicity, the initial condi-
tions of the DAE states at start time t0 are given by x0. In-
troducing z = (ẋ y), denoting the unknown variables, and
v = (x u p), denoting the known variables, the DAE can
be re-written as

F(z,v, t) = 0. (2)

Next, the causalization process to get an ordering of the
unknown variables z(t) is applied, which enables to solve
them sequentially

z = G(v, t) ∈ Rnx+ny . (3)

The general form of the causalized system consists of a se-
quence of k assignment statements including implicit sys-
tems of equations. These assignments and so-called alge-
braic loops can be stated as

0 = gi(zi,z1,z2, . . . ,zi−1,v, t) ∈ Rni , i = 1, . . . ,k, (4)

with
(z1, . . . ,zk) := z, zi ∈ Rni and

k

∑
i=1

ni = nx +ny.

Each function gi assigns values to zi by utilizing previ-
ously computed values for z1, . . . ,zi−1.

The Jacobian of a function of vector-valued function
f : Rn → Rm,x �→ f (x) is defined as

∂ f
∂x

=




∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn


 . (5)

An important tool when computing Jacobians are direc-
tional derivatives. The directional derivative of a vector
valued function f (x) is defined by

d f =
∂ f
∂x

·dx, (6)

where dx ∈ Rn represents the direction in which the di-
rectional derivative d f ∈ Rm is evaluated. The vector dx
is also referred to as a seed vector. In the following, di-
rectional derivatives will be used extensively to construct
Jacobians. A straight forward, although naive, approach
to construct a Jacobian from directional derivative evalu-
ations is as follows: Using the identity matrix I ∈ Rn×n,
and the unit vectors e1, . . . ,en ∈ Rn it holds

∂ f
∂x

=
∂ f
∂x

· I

=
∂ f
∂x

·
(

e1 . . . en
)

=
(

∂ f
∂x · e1 . . . ∂ f

∂x · en

)
. (7)

Thus, a Jacobian with n columns may be constructed from
n evaluations of directional derivatives along the n unit
vectors. Applying the concept of directional derivatives
on the DAE (2) yields the relation

∂F
∂ z

dz+
∂F
∂v

dv = 0, (8)

where dv is the input seed vector and dz works as the di-
rectional derivative of the relation (3) with respect to the
direction dv. By solving the system of equations (8) for a
particular seed vector dv, the directional derivative of the
DAE is obtained. Technically this system of equations is
represented in OpenModelica as a symbolic equation sys-
tem, like the original equation system (3). This system
contains the desired partial derivatives dz as unknowns,
the seed vector dv and all other variables from the original
system are considered as known and needs to be trans-
formed like the original system into an explicit form. This
can be achieved by applying so-called block lower trian-
gular algorithms resulting in

dz =−
[

∂F
∂ z

]−1

· ∂F
∂v

·dv =: H(z,v, t) ·dv . (9)
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This form can be further passed to the code generation to
enable the evaluation of the directional derivative at sim-
ulation time. It is important to note that the system of
equations (9) is linear in the unknown variables dz and the
application of linear solvers is sufficient.

3 Accelerate Jacobian Evaluation
In this section we present two different but not incompat-
ible approaches to accelerate the Jacobian evaluation to
motivate the use of the symbolic differentiation module of
OpenModelica for simulation and optimization.

3.1 Reuse of Constant Parts
Analyzing system (9), it is obvious, that the calculation
of H(z,v, t) is independent from the seed vector. If no al-
gebraic loop is involved, the calculation is symbolically
realized sequentially as

A = H(z,v, t) (10)
dz = A ·dv . (11)

Therefore, the calculation of equation (10) can be evalu-
ated once for each Jacobian matrix construction. The im-
plementation within OpenModelica is realised on expres-
sion level and basing on the wrapFunctionCall mod-
ule to identify time-consuming function calls as well as
common subexpressions and separate them inside the code
generation phase of the OpenModelica Compiler backend.
In order to emphasize the approach Example 3.1.1 is out-
lined in the following.

Example 3.1.1. A simple Modelica model with some sort
of expensive function f oo is considered:

model r e u s e C o n s t a n t P a r t s
Rea l x_1 ( s t a r t =1 , f i x e d = t r u e ) ;
Rea l x_2 ( s t a r t =0 , f i x e d = t r u e ) ;
Rea l y _ 1 , y_2 ;

equat ion
y_1 = s i n ( x_1 ) * foo ( x_2 ) ;
y_2 = s i n ( x_1 ) * cos ( y_1 ) ;
der ( x_1 ) = y_1*y_2 ;
der ( x_2 ) = y_1 + y_2 ;

end r e u s e C o n s t a n t P a r t s ;

Let bar be the derivative of f oo and dv the seed vector
with respect to v := (x1,x2). Then, differentiation will lead
to

∂ y1

∂vi
= cos(x1) ·dv1 · f oo(x2)+ sin(x1) ·bar(x2) ·dv2

∂ y2

∂vi
= cos(x1) ·dv1 · cos(y1)− sin(x1) · sin(y1) ·

∂ y1

∂vi

∂ der(x1)

∂vi
=

∂ y1

∂vi
· y2 +

∂ y2

∂vi
· y1

∂ der(x2)

∂vi
=

∂ y1

∂vi
+

∂ y2

∂vi
.

OpenModelica will generate the additional common
subexpressions cse4=cos(x_1), cse5=bar(x_2), and

cse6=sin(y_1) independent of the seed vectors to be
reused. Those are needed for the Jacobian evaluation but
not the ODE-evaluation and only computed once for each
integrator step and reused for each seed vector. The subex-
pressions cse1 and cse2 are determined during the ODE-
evaluation, and will be reused for the Jacobian evalution.
Finally, OpenModelica will generate C source code for the
Jacobian evaluation similar to:

/ * C o n s t a n t e q u a t i o n s * /
c se4 = cos ( x_1 ) ;
c se5 = b a r ( x_2 ) ;
c se6 = s i n ( y_1 ) ;
/ * Dynamic e q u a t i o n s * /
y1 . pDER = cse4 * dv_1 * cse2 + cse1 * cse5 * dv_2 ;
y2 . pDER = cse4 * dv_1 * cse3 − c se1 * cse6 *y1 . pDER ;
d e r ( x1 ) . pDER = y1 . pDER*y2 + y1*y2 . pDER ;
d e r ( x2 ) . pDER = y1 . pDER + y2 . pDER ;

Furthermore, if the equation system (3) contains
(non-) linear algebraic loops, an additional optimization
of the Jacobian matrix generation can be achieved as fol-
lows: Implicit equation systems of the form

gi(zi,z1, . . . ,zi−1,v, t) = 0 (12)

are differentiated straightforwardly equation by equation
in order to compute the directional derivative dzi. This
yields into

∂gi

∂ zi
dzi +

i−1

∑
k=1

∂gi

∂ zk
dzk +

∂gi

∂v
dv = 0 (13)

and can be solved as a linear system

dzi =−
[

∂gi

∂ zi

]−1
(

∂gi

∂v
dv−

i−1

∑
k=1

∂gi

∂ zk
dzk

)
, (14)

for dzi. A LU factorization of the matrix

∂gi

∂ zi
= L ·U

is performed allowing to obtain the solution directly by
forward and backward substitution. At this, the deter-
mination of the lower triangular matrix U and the upper
triangular matrix L is the most computational expensive
step. Since the matrix is independent of the seed vari-
ables dv, the LU factorization is constant for every Jaco-
bian matrix construction. Up to now, the LU factoriza-
tion is performed for each Jacobian matrix evaluation in
OpenModelica. We implemented the reuse of the LU fac-
torization so that the LU factorization is computed only
for the first evaluation of equation (11) and than reused
for the subsequent evaluations. The performance benefits
of this improvement is quite huge for the OpenModelica
implementation as depicted in Section 4.
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3.2 Parallelization of Jacobian Evaluation
From a computer architecture view, the overall perfor-
mance of a system is driven nowadays by increasing core
count due to the fact that further scaling of single core
frequency has reached physical limits w.r.t. overheating
and power consumption (Kirk and Wen-Mei 2016). Thus,
algorithms and software need to be parallelized to bene-
fit from today’s multi-core chips (Sutter and Larus 2005),
(Olukotun and Hammond 2005). In this section, we de-
duce a parallelization using multithreading for evaluation
of Jacobians basing on representation (7).

For simplicity and without limiting the generality the
sparsity and coloring is omitted in the following. The
algorithms and results presented in this paper are di-
rectly applicable for colored Jacobians with compressed
columns.

The basic idea is to enable concurrent evaluations of
the independent columns (i.e. the directional deriva-
tives) in the Jacobian matrix. In Listing 1 the main
Jacobian construction loop of OpenModelica is de-
picted: The Jacobian columns are elemtwise evaluated
within two nested for loops by calls to the function
directional_der_JacA. The later corresponds to
the directional derivative function in equation (9) and the
main work here is to achieve a thread-safe version of it.
This means that all writable variables and structures, as
linear algebraic loops, need thread local data to enable si-
multaneous execution.

Listing 1. Main Jacobian construction
f o r ( i n t i = 0 ; i < j a c −>columns ; i ++) {

j a c −>s e e d V a r s [ i ] = 1 . 0 ;
c a l l b a c k s −> d i r e c t i o n a l _ d e r _ J a c A ( da ta , j a c ) ;

f o r ( i n t j = 0 ; j < j a c −>rows ; j ++)
matr ixA [ i ] [ j ] = j a c −> r e s u l t V a r s [ j ] ;

j a c −>s e e d V a r s [ i ] = 0 . 0 ;
}

Since the Jacobian can contain linear algebraic systems it
is necessary to deal with non-thread-safe solvers in paral-
lel regions. In general each thread has to solve the same
linear system for different seed vectors simultaneously.
Figure 1 provides a schematic overview. We decided for
our first implementation to provide a duplication of the
structure of all linear algebraic systems to every thread.
Each thread works (read and write) exclusively on its own
copy and is thus thread-safe. This approach is not the
most memory economical and will be changed in the fi-
nal implementation in OpenModelica. To switch from a
global to a thread local data structure is a major change
in the OpenModelica Compiler backend and its C simula-
tion runtime. The thread local Jacobian data structure is
depicted in Listing 2.

Listing 2. Thread local data structure for Jacobians.
t y p e d e f s t r u c t LINEAR_SYSTEM_THREAD_DATA {

void * s o l v e r D a t a [ 2 ] ; / * P r i v a t e d a t e f o r
e x t e r n a l l i n e a r s o l v e r s * /

Figure 1. Evaluate Jacobian columns with linear systems in
parallel

m o d e l i c a _ r e a l *x ; / * S o l u t i o n x * /
m o d e l i c a _ r e a l *A; / * Ma t r i x A * /
m o d e l i c a _ r e a l *b ; / * V e c t o r b * /
ANALYTIC_JACOBIAN * j a c o b i a n ; / * J a c o b i a n * /
. . .

} LINEAR_SYSTEM_THREAD_DATA;

The OpenMP API (OpenMP Application Programming
Interface 2018) for shared-memory parallelization is used
to implement the presented parallel Jacobian evaluation in
the C runtime of OpenModelica. We choose OpenMP over
possible alternatives, like Pthreads and Intel TBB, for two
significant reasons:

Availability: The OpenMP specifications are corpo-
rately developed by hardware, software and compiler
manufactures since 1997 and it has become a de-facto
standard for shared-memory parallelization of C/C++ and
Fortran applications. Thus, it is widely supported by all
major compiler collections as well as available and appli-
cable on most systems.

Suitability: Since OpenMP heavily supports the fork-
join model by providing work sharing constructs, like par-
allel for loops and parallel sections. This fits the need
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for alternating single- and multithreaded computing stages
in our presented approach. Parallelization is introduced
through so-called pragmas, which are ignored if the com-
piler does not support OpenMP or no OpenMP support is
requested. This leads to the huge advantage, that exist-
ing sequential code can be parallelized, but still remains
sequentially executable if OpenMP is not supported.

The developed parallelization approach makes use of
the fork-join model in the sense that the columns of the Ja-
cobian are computed in parallel while the remaining sim-
ulation is sequentially executed. The n columns of the
Jacobian matrix are evaluated in the existing sequential
implementation within n iterations of a for loop. For
the parallel implementation, this for loop is preceded by
a work sharing #pragma omp for clause, which dis-
tributes the several loop iterations to the available threads
at runtime. The implementation is free of explicit bar-
riers and critical sections, i.e., the spawned threads run
fully concurrently in the parallel region. The maximal
number of independent chunks is barely the total num-
ber of columns of the Jacobian. Consequently, the ap-
proach can be scaled up to a maximum of n threads for
a fixed model. In practice, the speedup gained from us-
ing an increasing number of threads will saturate because
of the ever increasing overhead due to thread management
will predominate the computations. The actual mapping
of the columns to the threads is performed by a schedul-
ing algorithm. The OpenMP API offers several schedul-
ing algorithms like static, guided and dynamic scheduling.
Which scheduler fits best depends among other things on
the number of columns, the system’s architecture and the
containing equations. The Section 4.3 holds studies on
using different schedulers.

4 Benchmarks
In the following, we study the characteristics and possible
accelerations of the proposed enhancements w.r.t. Jaco-
bian evaluation within OpenModelica using models from
the ScalableTestSuite. We choose the ScalableTestSuite
over other Modelica libraries for benchmarking for the fol-
lowing reasons:

Scalability: All contained models are scalable by set-
ting one or more integer parameters. This is essential for
the analysis of the scaling abilities of the approaches and
their implementations, since the size of the Jacobian scales
with the model size.

Significance: There are several models with a quite
time consuming Jacobian evaluation.

Open-source: The ScalableTestSuite is freely available
under the BSD 3-Clause License at GitHub1. Thus, the
models can be inspected, and the results can be retraced
and reproduced, respectively.

1https://github.com/casella/ScalableTestSuite

4.1 Hardware and Software Stack
In order to provide transparent, comparable and re-
producible results, we describe the hardware and the
relevant software stack on which the benchmarks are
evaluated. The software configuration is as follows:
The GNU Compiler Collection (GCC, 7.0.1) was used
as C and C++ compilers with the optimization flags
-O2 -march=native. The open-source Lapack imple-
mentation OpenBlas in version 0.2.20 is linked for basic
linear algebra routines. We implemented the proposed
algorithms and the parallelization of the Jacobian eval-
uation within a branch basing on OpenModelica 1.13-
dev. The OpenModelica compiler needs to be invoked
with --generateSymbolicJacobian to generate sym-
bolical Jacobians for a model and the simulation flag
-jacobian=symbolical must be passed for execution.

All benchmarks are evaluated on the High Performance
Computing system (HPC) Taurus at TU Dresden (Online
Documentation for HPC System Taurus 2018). In par-
ticular, we choose an Intel Haswell node comprising of
two Intel Xeon E5-2680 v3 CPUs with 12 cores each,
and 64 GB RAM in total. In order to obtain reproducible
benchmark results the Hyper-threading technology as well
as the turbo mode is disabled and the benchmarks run with
the CPU‘s base frequency of 2.5 GHz. The resources are
exclusively allocated, i.e., no noise from other users has to
be considered.

Unless otherwise stated, all benchmark configurations
are repeated five times and the average time over the runs
is determined and used for the analysis. Using the average
is reasonable due to the fact that the minimal and maxi-
mal timing values for all benchmarks are very close to the
corresponding mean value.

4.2 Reuse of Constant Parts
The thermal models HeatingSystem_N (N = 20,40,80)
and electric models PowerSystemStepLoad_N_64_M
(M = 4,8,16) from ScalableTestSuite are used to analyze
the proposed reuse of constant parts.

The HeatingSystem model represents a district heating
system with N heated units, supplied by a heat distribution
system. We noticed that for all N between 14 and 15 %
of the total number of equations for the Jacobian evalua-
tion is recognized as constant equations regarding the seed
vector and therefore computed only once per time step.

The PowerSystemStepLoad model assembles a power
system with a linear topology, obtained by connecting N
power generators with each M finite volumes in a linear
network with equal transmission lines, and with a load
connected to each generator. Similar to the model above
OpenModelica with reuse of constant parts is able to rec-
ognize between 22 and 23 % of the Jacobian equations to
be reusable for different seed vectors.

The constant equations in these models consists en-
tirely of trigonometric functions, depending only on state
variables. While they are not especially expensive, there
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are a lot of them. For example the PowerSystem-
StepLoad_N_64_M models contain each 4032 constant
equations and up to 14210 equations dependent of the
seed vector, while the Jacobian is of dimension up to
1537×1537.

The Tables 2 and 3 present the achieved timings for the
HeatingSystem and PowerSystemStepLoad models using
colored symbolical Jacobians. The columns with heading
No RcP refer to the previous implementation without any
reusage of constant parts in Jacobian evaluation. In con-
trast, the timings provided by the improved implementa-
tion, which considers constant parts, are stated within the
columns RcP. For completeness and comparison reasons,
the timings obtained from the default numerical technique
for Jacobian evaluation are also given. The best timings
for the Jacobian evaluation are highlighted in bold face.

As can be seen from Table 2, the reusage of constant
parts significantly accelerates the Jacobian evaluation for
symbolical Jacobians by a factor of 1.8 up to 2.0.

For this model, it would be advantageous to use dense
symbolical Jacobians, since the number of colors found
by the used heuristic is equal to the dimension of the
Jacobian. Overall, the best timings are obtained for all
model sizes using symbolic Jacobians in conjunction with
reusage of constant parts. Furthermore, the symbolical Ja-
cobian evaluation is considerably faster than the default
numerical method. For example, the time spent to evalu-
ate the Jacobian matrices drops from 316.61 s to 62.96 s
for model size N = 80.

The benchmark results for the model PowerSystem-
StepLoad_N_64 are depicted in Table 3. For this model,
the gained speed-up from the reusage of constant parts
while Jacobian evaluation is about 1.7. The presented ap-
proach speeds up the Jacobian evaluation to such an ex-
tent, that it now outperforms the numerical evaluation.

The effect of the reusage of constant parts technique
depends on the ratio between function calls that can be
gathered as common sub expressions and then extracted
with RemoveSimpleEquations and the total number
of equation for the Jacobian evaluation.

4.3 Parallel Jacobian Evaluation
The model DistributionSystemLinear_N_M
(N = 14,20,28, M = N) is used to demonstrate the
application of the parallel Jacobian evaluation. This
model represents an AC current distribution system,
where the amount of segments can be scaled by the two
parameters N for the primary distribution line and M for
each secondary distribution line. The considered model
sizes and the corresponding attributes are depicted in
Table 4. Since the columns of the Jacobian matrix can
be evaluated completely independently from each other
and the implementation is free of explicit synchronization
constructs (e.g., barriers and critical clauses), we expect
near linear scalability for the parallelization approach.
Full linear scalability cannot be expected, because the
columns evaluated by the various threads need to be

written to the global Jacobian matrix which is in shared
memory. And on the other hand, the OpenMP loop
scheduling will introduce some parallelization overhead
as well. Figure 2 shows the strong scaling of the parallel
Jacobian evaluation for models of size N = 14, N = 20
and N = 28, whereas the speedups refer to execution
time with one thread. The black doted curve refers to the
ideal (i.e, linear) speedup. As can be seen, the achieved
speedup curves of all three models are nearly identical
and the scalability is very close to linear speedup. This is
a very good result and shows that the Jacobian evaluation
can be significantly accelerated by parallelization. We
also like to stress that the parallel Jacobian evaluation
scales up to almost the full system size for all model sizes.
Because the synchronization on OS level using the full
system with 24 threads dominates the small amount of
calculations w.r.t. thread-local Jacobian evaluations, the
scaling slumps for model sizes N = 14 and N = 20 at this
point. For model size N = 28 the computational portions
overlay the overhead due to OS synchronization.

Figure 2. Strong scaling of parallel Jacobian evaluation for
models with size N = 14, N = 20 and N = 28.

Next, we study the impacts of the four loop scheduling
algorithms that the OpenMP API offers. Loop schedul-
ing can have an serious impact on the scaling behavior
and execution time of a parallel loop. This is especially
true if not all iterations of a loop are equal in terms of
computational effort. Such disequilibrium is called load
imbalance. With respect to the considered parallelization
approach for the Jacobian evaluation we do no expect load
imbalances. But, eventually the good scaling behavior can
be continued to full system size even for small models.
The available scheduling algorithms are an in short:

Static: Without specification of the chunk size, the loop
is divided into approximately equal chunks. They are as-
signed to the available threads.

Dynamic: The iterations are distributed to threads in
the team in chunks. Each thread executes a chunk of itera-
tions, then requests another chunk, until no chunks remain
to be distributed. The chunk size defaults to 1.
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Table 2. Comparison of timings (in seconds) for total simulation and Jacobian evaluation for the HeatingSystem models achieved
by using numerical and symbolical Jacobian evaluation without and with reuse of constant parts.

Numerical Symbolical colored
No RcP RcP

N t_total t_jac #Jac Eval t_total t_jac t_total t_jac #Jac Eval

20 11.70 6.20 54780 8.87 2.91 7.49 1.51 54647
40 67.82 43.64 102521 52.71 21.21 43.76 11.59 102548
80 451.65 316.61 189576 404.59 153.70 324.56 75.98 190012

Table 3. Comparison of timings (in seconds) for total simulation and Jacobian evaluation for the PowerSystemStepLoad_N_64_M
models achieved by using numerical and symbolical Jacobian evaluation without and with reuse of constant parts.

Numerical Symbolical colored
No RcP RcP

M t_total t_jac #Jac Eval t_total t_jac t_total t_jac #Jac Eval

4 4.29 0.62 17 4.46 0.84 4.11 0.49 21
8 4.76 0.78 20 4.92 0.85 4.57 0.50 21

16 5.25 0.83 19 5.26 0.84 4.89 0.49 19

Table 4. Model size N and the corresponding values for
number of variables, states and algebraic loop size and columns
in Jacobian matrix.

N Vars States Loops Cols. in J Evals. of J

14 12364 196 1621 196 15
20 25096 400 3277 400 14
28 49016 784 6381 784 15

Guided: The iterations are assigned to threads in the
team in chunks. Each thread executes a chunk of iter-
ations, then requests another chunk, until no chunks re-
main to be assigned. For a chunk size of 1, the size of
each chunk is proportional to the number of unassigned
iterations divided by the number of threads in the team,
decreasing to 1. It defaults to 1.

Auto: The decision regarding scheduling is delegated
to the compiler and/or runtime system. The programmer
gives the implementation the freedom to choose any pos-
sible mapping of iterations to threads in the team.

The OpenMP API provides the runtime clause, via
which the schedule type can be specified at runtime. Thus,
recompilation of the entire project is not necessary. In Fig-
ures 3 and 4 the speedups of the four different schedul-
ing types for model size N = 14 and N = 28, respectively,
are diplayed. The speedup is calculated with respect to
the sequential execution time of the default scheduling
type, which is dynamic for GNU libgomp (Online Doc-
umentation for GNU libgomp: OMP_SCHEDULE 2018).
The speedups for the different schedulers are very tightly
bunched together for 1 to 23 threads. There is a mean-
ingful difference in performance using 24 threads for the
smaller model. At this point, the computational parts be-
come to small compared to the overhead introduced by the

thread managment. The scalibility of the approach is not
limited to 23 threads, but depends on the number of Ja-
cobian columns. The larger model scales up to the full
system using dynamic and guided scheduling. Overall,
the default scheduler (i.e., dynamic with chunk size of 1)
provides the best results. Hence, no adjustments from the
users will be necessary.

Figure 3. Speedup obtained for the scheduling types static,
dynamic, guided and auto for model size N = 14.

5 Conclusion and Outlook

The presented work contributes to the efficient and par-
allel Jacobian evaluation using symbolic differentiation.
For that, two complementary techniques are proposed to
accelerate the computations:
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Figure 4. Speedup obtained for the scheduling types static,
dynamic, guided and auto for model size N = 28.

Reuse of Constant Parts
While the speedup for many models from the Scal-
ableTestSuite are enormous there are still examples for
which OpenModelica currently is not able to find all con-
stant parts. For example for the SteamPipe models no
constant parts are found, despite big potential. The prob-
lem is, that removeSimpleEquation currently can’t
handle array equations and equations with function calls
inside function calls. We plan to extend the described
implementation in this way and expect a significant im-
provement for all examples inside ScalableTestSuite using
Modelica.Fluid and Modelica.Media models.

Parallel Jacobian Evaluation
The parallelization approach allows for concurrent evalu-
ation of the several columns of a Jacobian, which are in-
dependent. The OpenMP API is used for the implemen-
tation in OpenModelica. As discussed from a theoretical
point of view and as shown by benchmarks, the parallel
Jacobian evaluation provides near linear scalability. Sim-
ulations where Jacobian evaluations have a large share and
optimization algorithms can greatly benefit from this. Al-
though, only GCC was considered as compiler set, the
scaling property of the approach and the implementation
should be independent from the particular tool chain and
will also hold for smaller shared-memory systems.

Furthermore the same approach can be adapted to the
numerical and colored Jacobian evaluation in a similar
way and should speed up the default simulation with
OpenModelica significantly.

Sparse Rows Evaluation
As published in (Braun, Gallardo Yances, Link, and Bach-
mann 2012) the sparsity pattern of the Jacobian matrix can
be calculated in OpenModelica and used to compress the
matrix by combining columns with no shared non-zero el-
ements in the same rows. This process is well-know as
coloring and applied by replacing the identity matrix I in

(7) with a compressed matrix, where all non-zero elements
of the same color are combined into one compressed col-
umn as depict in Figure (5). Although the speed-up by

Figure 5. A matrix and its compressed representation from
(Gebremedhin, Manne, and Pothen 2005).

compressing Jacobian matrices is enormous, still in every
column the full directional derivative (9) is evaluated. This
also includes all rows that are structurally zero.

To address this issue we propose to exploit the spar-
sity pattern further by attributing every equation whether
it needs to be evaluated for the current column or not. To
make this decision the sparsity pattern is used to mark the
output rows of every column. In the next step an algorithm
is applied to detect the minimal equation set that is needed
to evaluate the marked output rows. The developed algo-
rithm is based on Tarjan’s algorithm as proposed in (Man-
zoni and Casella 2011). A necessary input for this algo-
rithm is the directed graph, which is based on matching of
the system (9). The output of the algorithm is mapped to
every equation, so that at runtime every equation of (11)
includes the dependency characteristic.

Since a large portion of the costly function calls can be
reused as shown in section sec:ConstantParts it is not clear
how big the remaining impact of this approach is. A first
implementation of the described approach, but without the
reuse of constant parts, leads to no clear results and needs
further study.

Combination of Described Techniques
When writing this paper, the presented techniques are im-
plemented on different branches of OpenModelica. Both
branches base on a recent OpenModelica version and are
very close to the mainline development branch and should
be included into the master branch in the near future and
be part of the next release.
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