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Abstract
Design, development, and analysis of complex Cyber
Physical Systems (CPSs) using models involves a collab-
oration of expertise from different engineering domains.
Heterogeneous artefacts are generated, often using dif-
ferent lifecycle modeling languages and simulation tools.
Capturing the traceability information among these arte-
facts can be used to support several activities such as re-
quirements tracing, impact analysis of change requests,
verification, validation, and documentation. However,
creating trace links among these heterogeneous artefacts
is challenging as different tools in the development lifecy-
cle are usually disparate and there is no precise semantic in
the terminology used between requirement engineers, ver-
ification engineers, and system modelers. In this paper, we
present a linked data-based approach to capture traceabil-
ity information and create trace links that relate heteroge-
neous artefacts in the model-based design process of CPSs
through a standardized interface and format using OSLC.
This enables artefacts from different tools to be connected
and queried through a standardized interface and format.
A practical prototype system for supporting traceability
is designed through integration with the INTO-CPS tool-
chain of CPS design. The traceability data is stored in
Neo4j graph database which can be queried for generating
various reports such as impact analysis, variant handling,
etc.
Keywords: Traceability, Trace links, Linked data, Tool in-
tegration, OSLC, Open Service for Lifecycle Collabora-
tion, Model Based Design, Cyber-Physical-Systems

1 Introduction
Cyber-Physical Systems (CPSs) are complex systems that
typically consist of computing elements, physical ele-
ments and communication channels (Song et al., 2016).
CPSs can for example be found in the aerospace do-
main, in automotive engineering, building automation or
robotics, where they often have safety-relevant features.
Therefore, exhaustive testing of the systems is necessary.
To minimize cost and development time, much of the test-

ing needs to be done virtually, while the actual device is
not yet fully ready. To allow this in an efficient manner,
model-based systems engineering (MBSE) methods are
being applied to the design of CPSs, to develop and test
those systems in a time and cost-efficient manner. The
MBSE approach requires that parts and features of the
system can be related to the design requirements in an au-
tomated fashion, supported by appropriate tools. This is
the requirements traceability challenge, where the differ-
ent steps of the implementation and validation of require-
ments need to be traceable to the original requirements.
Only then is it possible to reliably demonstrate that all re-
quirements have been taken into account in the design of
the CPS. The software tools that are used to develop and
test such complex systems are often heterogeneous.

One important challenge for MBSE of CPS therefore is
to enable the engineers to trace the different elements of a
CPS along its development cycle back to the requirements.
For the tools that are used for the development, this means
that they require a common approach to provide and pro-
cess the traceability-relevant data, and to have a common
syntax and semantics for generating and transmitting the
data.

During the past decade, the Open-Services for
Lifecycle Collaboration (OSLC) specifications (Open-
services.net, 2008) have emerged for integrating develop-
ment lifecycle tools (e.g., modeling tools, change manage-
ment tools, requirements management tools, quality man-
agement tools, configuration management tools) using
Linked Data (Heath and Bizer, 2011) approach. The goal
of OSLC is to make it easier for tools to work together by
specifying a minimum amount of protocol without stan-
dardizing the behavior of a specific tool. The OSLC spec-
ifications use the Linked Data method to enable integra-
tion at the data level via links between artefacts. The arte-
facts information is represented as Resource Description
Framework (RDF) (Manonla and Miller, 2004) resources
identified by HTTP URIs. OSLC also provides a common
protocol for manipulating those RDF resources through
standard RESTful (Richardson and Ruby, 2007) web ser-
vices such as creation (HTTP POST) and retrieval (HTTP
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GET), update (HTTP PUT) and delete (HTTP DELETE)
operations on RDF resources.

The main contribution of this paper includes the fol-
lowings. First, we demonstrate a Linked Data-based ap-
proach for traceability in the model-based design process
for CPSs, and the implementation of this traceability ap-
proach in the respective tools. This enables recording
and establishing the traceability links of model elements
(e.g., requirements, activities, artefacts, modeling tools,)
through a standardized interface and format using OSLC.
Second, we build a flexible trace links ontology of arte-
facts between requirements, simulation models, FMUs,
simulation results, and test results. Third, we validate
the ontology through an example workflow with hetero-
geneous artefacts in systems engineering.

2 Background
While there have been significant efforts dedicated to the
introduction of traceability, there are several challenges
that prevent traceability from being used in all the cases
where such an application would be beneficial.

First, for traceability to be accepted in industrial use,
the overhead that is created by it, must be minimal. There-
fore, most functions need to be automated, and well inte-
grated into different tools. Due to the heterogeneity of
software tools that are used in systems engineering, all
tools need to be equipped with interfaces that exchange
data in a unified format, so that the syntax and semantics
of the traceability data are compatible. Different “trace-
ability information models” (TIM) have been developed
that define the data model used to describe the traceabil-
ity links between different entities (Mustafa and Labiche,
2017). However, up to now, no universal TIM was estab-
lished.

For the usability of traceability, considering the repre-
sentation of the essential traceability data depending on
the context is important (Li and Maalej, 2012). Here, vi-
sualisation of the data as matrices, lists or trees was ex-
plored.

This paper describes the concept and following imple-
mentation of traceability in the INTO-CPS project, that
was running from 2015 until 2017 (Larsen et al., 2016a).
In this project, an integrated tool-chain for model-based
design of CPS was developed. On the tooling side, INTO-
CPS covers abstract modelling in SysML with the Mod-
elio1 tool. Detailed modelling of the different parts of a
CPS is done in the tools Overture2, 20-sim3 and Open-
Modelica4. System simulation is executed through a
newly created Co-Simulation Orchestration Engine (COE)
based on the FMI standard (Blochwitz et al., 2012). The
FMI standard allows creation of executable units, called
Functional Mock-up Units (FMUs) that contain a simu-

1see https://www.modelio.org/
2see http://overturetool.org/
3see http://www.20sim.com/
4see https://openmodelica.org/

lation model and its solver. Such an FMU can be con-
trolled with a standardized API, and its input and out-
put signals are described with an XML file, which is
called the modelDescription.xml. Test automation
and model checking are performed by the RT-Tester tool-
suite5. INTO-CPS enables a smooth workflow between
the different tasks of CPS development, and the corre-
sponding tools. Regarding traceability, the different tools
initially had no interface for exchanging traceability data.

License rights for distribution and usage of INTO-CPS
application, along with the COE and the traceability dae-
mon and the SysML profile for Modelio, which also con-
tains the traceability features, reside with the INTO-CPS
association 6 under open source. The traceability func-
tions for Overture and OpenModelica belong to the re-
spective organisations and are also available under an open
source license.

3 Traceability in the INTO-CPS
project

3.1 Scope
The primary scope for traceability in INTO-CPS is
demonstration of the basic traceability tasks across the
tool-chain. This includes mostly tracing of the require-
ments and connecting them with the models, the simula-
tion results, the produced code and test results. Further-
more, analysing the impact of changes (e.g. in require-
ments) to the overall system can be supported through
traceability. Traceability is meant to create as little over-
head for the user as possible, so that most actions should
occur automatically without the need for user interaction.
The openness of the INTO-CPS tool-chain shall be main-
tained, by defining open interfaces and formats, such as
the ones described in this paper.

However, it is not in the primary scope of the traceabil-
ity work in INTO-CPS to be able to trace back all steps
of the development and revert to each step in the devel-
opment’s history. For this, other parts of the INTO-CPS
project and tools are seen as more appropriate, such as
versioning tools (SVN, Git) or functionality of the INTO-
CPS Application. Therefore, as will be described below
in Section 5, some of the tools support Git for versioning.

3.2 Ontology
The traceability ontology for INTO-CPS uses concepts
from the PROV working group of the World Wide Web
Consortium (W3C)7. PROV deals with three objects: en-
tity, activity and agent. Entities can include requirements,
models, simulation configuration files or simulation re-
sults. Activities can be saving of a model, running a co-
simulation or more. An agent is a user that performs these
activities.

5see https://www.verified.de/products/
6see http://into-cps.org/
7see https://www.w3.org/TR/prov-overview/
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Figure 1. Block Definition Diagram showing the FMU Export activity.

In the context of traceability, these objects are con-
nected by relations. PROV proposes relations such as
“used”, “was generated by” or “was derived from”. In ad-
dition to these relations, further relations are used for the
ontology of INTO-CPS, to express the relevant relations.
These are taken from the OSLC8 definitions. Furthermore,
custom relations are proposed. The complete list of rela-
tions is described in the following table:
prov:used one entity used another

one
prov:wasAttributedTo attribution of entities
prov:wasAssociatedWith association of activities
prov:wasGeneratedBy one entity is generated

from another
prov:wasDerivedFrom one entity is derived

from another
prov:hadMember one entity has one or

more members
oslc:elaborates an entity that elaborates

on a requirement
oslc:satisfies an entity that satisfies a

requirement
oslc:verifies an entity that verifies an

assumption
into:doesNotVerify an entity that does not

verify an assumption
into:violates an entity that violates an

assumption
A number of activities are defined which shall create

traces, using the objects and relations shortly described
above. To illustrate this concept, a single activity is de-
scribed in the following Figure 1 with its SysML Block
Definition Diagram. The Activity “FMU Export” is as-
sociated with an agent and related to a number of enti-
ties. It generates an FMU (e.g. a file) and uses a simu-
lation tool and a Component Simulation Model, and may
in addition use a Test FMU, a Model Check Model and

8see http://open-services.net/

a Model Checking Suite, if the FMU is derived from a
Model Checking activity. Finally, the FMU Export ac-
tivity is associated with an Agent, and the FMU itself is
attributed to this agent.

3.3 Architecture
This section introduces an outline of the tool and file sys-
tem elements that support the traceability activities in the
INTO-CPS tool-chain, and this outline is shown in Figure
2.

The central element of the traceability architecture is
the traceability daemon, along with an interface (a REST-
API9) that can be used in two ways: The tools (e.g. 20-
Sim, OpenModelica, Overture, Modelio, RT-Tester, the
COE, the INTO-CPS application) write data to the inter-
face (e.g. they send traceability information from actions
that happened within the tools to the daemon), the INTO-
CPS application queries the interface (e.g. for retrieving
information from the database). The daemon acts as front-
end to the database (both for write and read operations, as
explained later).

A schema 10 for the traceability messages is developed,
which defines the format of the messages, and restricts
their content. The schema defines the valid syntax of
data submissions from the various tools. The tools need
to implement the correct format, and the daemon vali-
dates if the tool has done it properly. This makes sure
that the database contains only information that follows
the same format, and therefore can be queried easily. Cru-
cially, since the schema is machine-readable, the valida-
tion is done automatically. Furthermore, since the schema
is public, traceability can be easily implemented in other

9REST: Representational State Transfer; API: Application Program-
ming Interface

10see https://github.com/INTO-CPS-Association/
into-cps-application/tree/development/src/
resources/into-cps/tracability/schemas
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Figure 2. Schematic architecture of the traceability-related
tools.

tools (e.g. tools from vendors outside the INTO-CPS con-
sortium, for instance from the INTO-CPS association) so
that these can send valid traceability messages to the dae-
mon. In the schema, all allowed traceability-related en-
tities, such as activities, artefacts or tools are contained.
Relations between entities, such as prov:wasGeneratedBy,
oslc:satisfies and more are also described in the schema. It
is therefore important in such a tool-chain-wide approach
as with traceability, that all the tools comply with the
schema and that the whole ontology (see Section 3.2) is
covered by it. The process of generating messages, send-
ing them to the daemon and validating them, is shown in
the Figure 3 below. The user action, which in this ex-
ample is the export of a modelDescription.xml file
from the Modelio tool, triggers the generation of a mes-
sage with the file ending *.dmsg, which shall comply to
the Schema. This message is sent via HTTP to the dae-
mon, who validates the message according to the schema.
If the message is valid, the daemon adds the content of this
message to the global database and saves the *.dmsg file
in the project folder.

4 Example Workflow
To illustrate the methods that have been described in the
previous sections, we introduce an example. Figure 4 il-
lustrates on the left side a complete workflow for the pro-
cess from System Modelling, Behaviour Modelling and
Co-Simulation, here performed using the tools Modelio,
OpenModelica and the INTO-CPS Application..

The user starts with System Modelling, where the
system is described by using SysML blocks includ-
ing their ports and attributes. Requirements are writ-
ten down and linked to the different SysML blocks
that shall implement them. From a single block, a
modelDescription.xml file can be exported, which
is then imported into a modelling tool such as OpenMod-
elica, to give the frame in which the behaviour will be
implemented. This model will be saved, and finally ex-
ported to an FMU. Multiple of these FMUs will be con-
nected in the INTO-CPS Application to form a Multi-
model. The Co-Simulation will be set up with parameters

Figure 3. Schematic process of generating and saving a trace-
ability message. For readability, the message content is omitted.

such as time-stepping or simulation duration. Finally, the
Co-Simulation is run to give the simulation traces.

The right hand side of Figure 4 shows the main arte-
facts, from the requirements over the model files to the
simulation results, and their relations in the Prov or OSLC
notation (see Section 3.2), as they are stored in the trace-
ability database. Note that for readability, we show only
the most relevant artefacts here, and omit those that are
created by the tools to represent authors, activities, tools,
timestamps or additional information. The figure shows
that all the artefacts are linked, so that it is for instance
possible to see that a particular requirement has been im-
plemented in a system element, and later its behavior has
been simulated. As we will discuss in Section 6, it is also
possible with the usage of a test automation tool, to add
information about the verification or violation of require-
ments.

This example only shows a very simple workflow, with-
out advanced activites such as Model Checking or Design
Space Exploration. It does, however, illustrate the relation
between the engineering workflow, the traceability data
and its representation. The different steps in the develop-
ment cycle of a CPS that are depicted in Figure 4 are usu-
ally performed by multiple people or organisations, using
different tools.

5 Implementation in the INTO-CPS
tools

This section describes the implementation of the trace-
ability features in the different tools, which are shown in
Figure 2. OSLC is chosen as an implementation specifi-
cation to manage traceability information from different
lifecycle tools used in the model-based design of Cyber-
Physical Systems. In our prototype, artefacts and their
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Figure 4. Example workflow (left), and most relevant artefacts and their trace relations (right).

relationships are described using an RDF/JSON format.
The structure of the RDF consists of RDF triples with a
Uniform Resource Identifier (URI) grouped into graphs:
artefacts(subjects), relations (Predicates) and what it be-
longs to (objects). For instance, "Model (Subject) satisfies
(Predicate) a requirement (Object)". The type of link (i.e.,
the predicate used in the link triple) defines the semantics
of the link thus providing traceability between artefacts.

5.1 Traceability Daemon

The traceability daemon is essentially the core of the
traceability tool support. In our implementation, it is
launched or terminated by the INTO-CPS Application.
The daemon’s primary function is to create an OSLC com-
pliant HTTP port and listen for the POST and GET ac-
tions. The different tools send data to an IP address at
which the daemon is running (which, in our implementa-
tion, must be known to the tools). It stores the data sent
via a POST request and will return a suitable response
to a GET request. The requests are sent from the dif-
ferent tools, and the received data is stored in the Neo4J
database. The daemon provides an interface that allows to
retrieve the required data. This interface basically passes
Cypher (see Section 6) queries to the Neo4J database.

The database is stored in a binary format, which causes
problems when it is versioned (e.g. in a Git or SVN sys-
tem) and changed by multiple users. To solve this, a step
is added between receiving of the traceability messages
and storing them in the Neo4J database. Each message
the daemon receives is saved as plain text into a single
file (with .dmsg file ending) in the project folder. The

content of one such file is indicated in Figure 3. At the
startup of the INTO-CPS Application, the daemon builds
the database from these single files. This allows multiple
users to work on the project simultaneously. Each user
generates traceability messages by the different actions
he/she performs. These messages are stored in the project
folder. After completion of a task, the user pushes the files
to the global repository. Merging of the database is then
done by combining the .dmsg files. After an update of the
project folder, each user has access to the whole database.
The schematic process is shown in Figure 5 below.

In addition, the daemon is validating the messages it re-
ceives from the tools with respect to the schema, to make
sure that only those messages that comply with the schema
are written into the database. Only when all tools use the
same message format will the queries (see Section 6) re-
turn meaningful information.

5.2 Modelio
The requirements definition part is handled only by Mod-
elio. Modelio represents the Architecture Modeling ac-
tivity in the INTO-CPS workflows. Modelio records
the following traceability actions: Architecture creation,
Architecture modification, ModelDescription export, Co-
Simulation configuration export, Requirements generation
and linking to SysML blocks.

Consequently, these actions are traced11. The Archi-
tecture creation / modification captures the generation and
modification of a SysML block in Modelio. The genera-

11In this context, “traced” means that messages are generated and sent
to the daemon
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Figure 5. Schematic process of merging multipe messages from
different users and building the Neo4J database from them.

tion of modelDescription.xml files from a SysML
block is the next step in the workflow. Exporting a co-
simulation configuration from a SysML connections dia-
gram, which can be transformed in the INTO-CPS appli-
cation into a Multi-model, is also traced. Generation of
requirements, and association of these requirements with
SysML blocks is traced. This association can either be of
the type oslc:verifies or oslc:satisfies.

In addition to the ad-hoc generation of traceability mes-
sages, which are created when the related action is be-
ing performed, Modelio also offers the option to convert
the Git history of a Modelio project into traceability mes-
sages. This is particularly useful for situations, where
traceability was not used from the very beginning.

5.3 Modeling tools

While Modelio is the starting point for requirement trac-
ing, the modeling tools OpenModelica, 20-sim and Over-
ture capture specific functional and non-functional aspects
of the system design. They are described briefly in this
section. Generation of models, either from scratch or from
an imported modelDescription.xml file (e.g. com-
ing from Modelio in the previous step) is the next step
in the workflow, and consequently traced, together with
their modification. FMUs can be imported from other
tools, to include them in the native models. Exporting
an FMU is the next step in the workflow, and is conse-
quently also traced. OpenModelica, 20-sim and Overture
record the following traceability actions: Model creation,
model modifiation, FMU export, FMU import, modelDe-
scription.xml import.

20-sim 20-sim is a modeling and simulation tool for
mechatronic and control systems. Because Git is needed
for the INTO-CPS traceability daemon, it is not possible to
only enable the traceability daemon without enabling Git
version control. If both options (for Git version control
and for communication with the traceability daemon) are
enabled, every traceable action in 20-sim will store a copy
of its data in the indicated Git repository. If the model
itself is already in a Git repository, this will also make
sure to commit the changes to this repository automati-
cally. There is an additional option named “Write custom
save messages”, which will ask the user to write a custom
message whenever a traceable action is performed. This
message will be stored in Git as the Git commit message.

The “Model creation” action is a “Save as” action,
which is the moment when the user officially saves a
new model to disk. In the same line of reasoning, a
“Model modification” action is a “Save” action in 20-
sim, because the user modifies an existing model on
disk. 20-sim has no support for deleting a model from
within its user interface, therefore there is no traceabil-
ity query to delete a model from 20-sim. 20-sim also
has support to export and import an FMU and to import
a modelDescription.xml file. These three actions
are also traced. The exported or imported FMU or the
imported modelDescription.xml file will also be
placed under version control in the Git repository. Cur-
rently 20-sim does not support tracing the export of a tool-
wrapper FMU.

OpenModelica OpenModelica is an open-source mod-
eling and simulation tool which uses the Modelica lan-
guage (Fritzson et al., 2018). Traceability support in
OpenModelica is very similar to the one implemented in
20-sim. After an initial configuration of the Git repository
and traceability daemon, the actions for saving a model,
import of a modelDescription.xml file and export
of an FMU are traced without further user interaction.
Traceability in OpenModelica is described in more detail
in (Mengist et al., 2017).

Overture In Overture, which is a modeling tool using
the Vienna Development Method (Larsen et al., 2010),
traceability is implemented as an additional package (as a
.jar file), that can be downloaded from the GitHub page
12. This package extracts traceability information from the
Git repository, where the current Overture project is stored
in. It can be either triggered manually, or simply added to
a Git post-commit hook, to send new traces to the dae-
mon after the user commits the changes to the model to
the repository. Similar to Modelio, this way of extracting
traceability messages from the Git repository is useful if
traceability has not been used since the start of the project.

12see https://github.com/overturetool/
intocps-tracability-driver/releases
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5.4 RT-Tester
RT-Tester is a tool for test automation and model check-
ing. It records the following traceability actions: Define
test model, define test objectives, run test, define model-
checking model, define continuous time abstraction, run
model-checking query.

There is no need for the user to configure these oper-
ations, because per default valid settings (for the INTO-
CPS Application) are used.

5.5 INTO-CPS Application
The INTO-CPS Application is the graphical user inter-
face for configuring and running co-simulation scenar-
ios, design-space exploration, test automation and model
checking (Larsen et al., 2016b). It records the following
traceability actions: Multi-model creation, Co-Simulation
configuration creation, run simulation.

These actions are automatically recorded once the user
creates a multi-model from an exported SysML configu-
ration diagram, generates a Co-Simulation configuration
from a multi-model, or modifies these configurations. Fi-
nally, the start of a simulation run is also recorded.

6 Queries and Visualisation
In order to bring a benefit to the user, the traceability data
not only needs to be recorded, but also analysed and pre-
sented in a way that is helpful to the user. The tools there-
fore must have a way of querying the database, for spe-
cific information, such as relations between requirements,
models, test results, users or simulation results.

The results from these queries are displayed within the
INTO-CPS Application as lists, separated between differ-
ent categories (FMUs, Users, Simulations, Requirements),
as discussed below in Section 6.2. These categories can
be extended and minimized, to present a neatly arranged
view to the user. Additionally, for expert users that have
a good understanding of the underlying structure, and that
are proficient in generating queries to the database, it is
possible to manually enter queries to search the traceabil-
ity database, using the Cypher query language (see Sec-
tion 6.1 below).

While there is plenty of research on traceability in soft-
ware or systems engineering, only few industry standard
tools implement traceability. One of them, IBM Doors
Next Generation, is among the most popular tools (Win-
kler and Pilgrim, 2010), which displays traceability rela-
tions between requirements on different levels (e.g. high-
level requirements and their refinements) as trees or lists
13. Another common way of displaying traceability re-
lations is the matrix view, which shows the relations be-
tween different artefacts in a 2-dimensional table. How-
ever, due to the heterogeneity of the different artefact types
(requirements, models / FMUs, simulation results, config-

13see also https://jazz.net/library/article/88104

uration files etc.), the matrix view is not implemented in
the context of INTO-CPS. Another standard way of pre-
senting links is the graph view, where the different arte-
facts and their relations are shown in a graph. This is
possible using the built-in Neo4J interface which allows
browsing the complete graph. In principle, however, the
openness of the INTO-CPS tool-chain allows for creation
of new views, if they are required by a specific use-case.

6.1 Cypher query language
The Neo4J database uses a query language called Cypher.
This language uses ASCII syntax to represent nodes and
relations. Nodes are surrounded by parentheses “(” and
“)”, and relationships are identified by square brackets
“[” and “]”. More information can be found on 14. In a
study by Rath et at, graph query languages such as Cypher
were also identified as suitable for requirements traceabil-
ity (Rath et al., 2017).

6.2 Implementation in the INTO-CPS appli-
cation

For representation of the traceability links to the users,
pre-defined queries were integrated to the INTO-CPS Ap-
plication. They allow the user to search for different arte-
facts and relations between artefacts. The user interface is
identical to the rest of the INTO-CPS Application, which
lowers the entry barriers for users. The search queries gen-
erate lists of items, which can be minimized to keep an
overview of all the presented data.

The following queries are implemented in the INTO-
CPS Application to allow for an easy usage.

1. FMUs: Query the database for all requirements that
are related to a specific FMU.

2. Users: Query the database for all activities and arte-
facts that are related to a specific user.

3. Simulations: Query the database for all the Co-
Simulation results that are associated with a multi-
model.

4. Requirements: Query the database for test results
that are linked to requirements.

Right-clicking on the “Traceability” button on the left-
hand side of the window opens a context menu (see Figure
6). Clicking on “Trace Objects” shows the overview of
the different queries, that can then be extended and mini-
mized.

FMU and requirements This query is ran in two steps.
The first query lists all the FMUs that are stored in the
database (e.g. after FMU export in Overture, 20-sim or
OpenModelica, see Section 5.3.)

In the Cypher language (see previous Section), the first
query is achieved with the following command:

14https://neo4j.com/developer/
cypher-query-language/
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Figure 6. Overview of the traceability queries in the INTO-CPS
Application.

match(n{type:’fmu’})
return n.uri, n.path

In the next step, all requirements that are related to
a specific FMU (<FMU_name>) are queried by the fol-
lowing command (note that “act” denotes an activity, and
“elem” denotes an element):

match (act)<-
[:Trace{name:"prov:wasGeneratedBy"}]-
({uri:’<FMU_name>’})
-[:Trace{name:"oslc:satisfies"}]->
(elem)

return
elem.uri, elem.hash, act.time, elem.type

order by act.time desc

This returns all the requirements that are linked by the
oslc:satisfies relationship to the particular FMU.

Users, artefacts and activities The INTO-CPS project
aims explicitly the collaborative modelling, which means
that multiple people are typically involved in the process.
To support this, all the users and their actions can be
traced. First, all users are queried from the database by
using the following command:

match (usr{specifier:’prov:Agent’})
return usr.name, usr.uri

Next, all the artefacts that were influenced by a partic-
ular user (here identified by the URI, which contains the
e-mail address Agent.user@mail.com) can be found by:

match (usr{uri:’Agent.user@mail.com’})<-
[:Trace{name:’prov:wasAttributedTo’}]-
(entity)

return entity.uri, entity.type

These artefacts are for example simulation results,
FMUs, model description files or simulation configura-
tions. A complete list of activities can be found in the
schema under the enumeration for ArtefactType. In
addition, all the activities performed by this user can be
traced by:

match (usr{uri:’Agent.user@mail.com’})<-
[:Trace{name:’prov:wasAssociatedWith’}]-
(entity)

return entity.uri, entity.type

The activities are for example architectureModelling,
modelDescriptionExport, simulationModelling and so
forth. A complete list of activities can be found in
the schema under the enumeration for ActivityType.
Those activities reflect the activities as described in the
ontology (see Section 3.2).

Simulation results and files To show which resources
were used to generate simulation results, all the simulation
results are queried first by the following command:

match (n{type:’simulationResult’})-
[:Trace{name:"prov:wasGeneratedBy"}]->(m)

return n.uri, m.time, m.type

In the next step, all files that were used (i.e. that have
the relation prov:used) to produce a particular simulation
result (<Result_file>) are queried by the following
command:

match({uri:’Entity.<Result_file>’})-
[:Trace{name:"prov:wasGeneratedBy"}]->
(simulation)-
[:Trace{name:"prov:used"}]-
(entity)

return entity.uri, entity.path, entity.hash

This query lists the FMUs, the configuration files and
the log files which are related to this particular simulation
result.

Requirements and Test results To relate requirements
with the test results from RT-Tester (see Section 5.4), three
different queries were implemented. Requirements with-
out positive simulation or test results are queried by:

match (req{type:’requirement’})
where not (req)<-
[:Trace{name:"oslc:verifies"}]-()

return req.uri

This query indicates to the user all those requirements
that have not been validated yet. Requirements without
any simulation or test result are queried by the following
command:

match (req{type:’requirement’})
where not (req)<-
[:Trace{name:"into:violates"}]-()

and not (req)<-
[:Trace{name:"oslc:verifies"}]-()

return req.uri
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This query finds all requirements that have not yet been
tested, and therefore were neither found to violate a re-
quirement, nor to verify one. And finally, requirements
with at least one positive but no negative test result are
queried by:

match (req{type:’requirement’})
where (req)<-
[:Trace{name:"oslc:verifies"}]-()

and not (req)<-
[:Trace{name:"into:violates"}]-()

return req.uri

This finds those requirements that have been tested
positively and can be seen as fulfilled, since no counter-
example was found.

6.3 Evaluation of the current tool-chain
While the presented implementation in the different tools
is mainly a proof of concepts, some conclusions for a gen-
eral evaluation of the concepts can be drawn. The open
architecture that relies on OSLC allows different tools,
independent of their platform, to exchange data through
well-established standards (such as HTTP or JSON). The
format of the messages is published in a JSON schema
file, which allows any other tool to verify its messages
and connect to the workflow. The overhead in terms of the
amount of data that is being sent and stored is considered
to be little, as the JSON files are lightweight, and only rel-
evant activities are recorded. The Neo4J database with its
Cypher querying language allows flexible querying of the
database, so that additional activities or tools could easily
be integrated. The current solution with the traceability
daemon running locally with the INTO-CPS application
should in future be replaced with a centralised traceabil-
ity service, which is however easy to implement. There-
fore, the tool prototypes currently implement no dedicated
error handling if no connection to the daemon is avail-
able. Furthermore, no mechanism to handle user authen-
tification was implemented in our prototype. In summary,
we consider our approach to traceability to be simple and
yet powerful enough, due to its openness and little over-
head. Especially for larger project in safety critical do-
mains, where documentation of the relation between re-
quirements, tests and validation results is required, the
presented approach is promising.

7 Related Work
There are several existing techniques that aim to model
traceability among heterogeneous domains. However, in
a systematic literature review conducted in (Mustafa and
Labiche, 2017), existing traceability approaches are either
limited to a specific domain and problem, or they lack to
specify traceability link semantics. For example, a Trace-
ability Information Model (TIM) has been proposed in
(Taromirad et al., 2013) for capturing heterogeneous arte-
facts in the context of the safety-critical systems domain

where the TIM is defined on top of multi-domains us-
ing Ecore (Steinberg et al., 2009) metamodeling language.
This model, however, lacks to specify how source and tar-
get artefacts can be linked and it is not clear how to clas-
sify a trace link or an artefact.

In (Hung Le Dang and Hubert Dubois and Sébastien
Gérard, 2008), the authors proposed a traceability model
for tracing heterogeneous artefacts (requirements model,
design artefacts, and verification and validation model) in
automotive systems. This solution only supports specific
types of trace links and cannot be extended to support a
new traceability link and various modeling languages.

The Traceability Metamodeling Language (TML) is
also presented in (N. et al., 2009) for defining the syntax
and semantics of traceability metamodels. It can support
any type of traceability links including the newly created
ones. However, only artefacts from Meta Object Frame-
work (MOF)-based models can be traced and linked.

ModelBus (Hein et al., 2009) is a tool integration
framework in the domain of system engineering, which
uses traceability data such as timestamps for artefact cre-
ation and modification, and information about the creator
of a specific artefact. But, it rather uses a one to one
transformation for the integration of two tools since there
is no common data format. As with ModelBus, our ap-
proach also builds the integration based upon Web Ser-
vices. However, the usage of common data format and
OSLC in our approach makes the integration more up to
date to the latest industrial standard of managing traceabil-
ity data in the whole development lifecycle in the model-
based design of CPSs.

Compared to the above existing approaches, we pre-
sented a linked data-based approach to handle standard-
ized traceability links for heterogeneous artefacts from
different lifecycle modeling languages and simulation
tools. The integration is based upon the standardized de-
fined schema to ensure that all tools use the same format
for sending their data, and an ontology was defined to de-
scribe the data that is collected at different events.

8 Conclusion
This paper presents the results of the traceability and
model management efforts in the INTO-CPS project. A
common architecture for traceability was designed, using
a central database as repository for all traceability infor-
mation, and a daemon to receive data from the different
tools. A message schema was defined that ensures that
all tools use the same format for sending their data, and
an ontology was defined to describe the data that is col-
lected at different events. Collaborative work involving
multiple users is supported. All tools record the relevant
actions, and the whole workflow of INTO-CPS is covered,
with respect to traceability data. Collection of data is au-
tomated as far as possible, minimizing overhead for the
users. Queries were implemented in the INTO-CPS appli-
cation to return meaningful data to the user.
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While the INTO-CPS tool-chain is well covered with
respect to traceability, external tools are not supported.
For example, if FMUs were generated in other tools, this is
not listed in the traceability database. Therefore, methods
for covering these artefacts coming from external tools,
could be developed in the future. Since interface, ontol-
ogy and format for the messages are public, support for
external tools can easily be integrated by their developers.
In principle, traceability should be used since the begin-
ning of a project, such as CPS design. However, parsing
of the Git repository, as it is enabled by Overture or Mod-
elio, enables users to take advantage of traceability even
though it was not used from the very beginning.

In the context of INTO-CPS, we enabled requirements
traceability in the whole tool-chain of CPS design, from
requirements collection, systems modeling, through phys-
ical and cyber modeling, down to co-simulation and test
automation. This presents an important step in the true in-
tegration of the different tools that are used in CPS design.
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