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Abstract
The adoption of distributed photovoltaics (PV) with smart
inverters was one of the first large-scale deployment of
grid-interactive, customer owned assets. This paper in-
troduces a co-simulation platform for future scenarios of
Distributed Energy Resources (DER), in the context of
large-scale deployment, to assess the local and global im-
pact on the electric power grid. The co-simulation plat-
form utilizes the Functional Mock-up Interface (FMI) in-
dustry standard to couple 80,851 individual simulators.
For this purpose a Modelica package named SCooDER
was developed, which includes models for various DERs.
The simulation was conducted at the Lawrencium high
performance computing cluster. It included a hierarchi-
cal structure of multi-level electricity grids (i.e., transmis-
sion, medium-voltage distribution, and low-voltage dis-
tribution), and PV with smart inverters and time-varying
load profiles at 80,000 load buses, in representation U.S.
state sized electric power grid. With the flexibility of the
simulation framework and the agreed-on industry standard
for simulation model exchange, future applications can be
very broad by coupling multi-domain simulators.

1 Introduction
Power grids world wide are undergoing big changes due
to the increasing amount of distributed energy resources
(DERs) such as photovoltaics (PV), behind-the-meter
battery storage (BTM-BS), and electric vehicles (EVs)
(Bayod-Rújula, 2009). Deploying large amounts of DER
can result in unintended and potentially critical conditions
on the grid. Simulations offer one means of conducting a
contingency analysis to identify critical scenarios and to
support the planning and installation of DERs. However,
large-scale, detailed simulations are complicated to setup
and solve. As a result, detailed simulations are often only
conducted for a specific application due to the cost and la-
bor intensive setup. They are also often only conducted
for specific events in subsections of the grid like in (Leou
et al., 2013), (Godfrey et al., 2010), or (Stetz et al., 2012).
Simulations of larger grids often do not include detailed
models of single DERs; instead they use pre-computed
power flows (i.e., positive and negative active and reactive
loads) for discrete time steps.

Another difficulty for simulations is the large variety
of devices that are connected to the power grid and the
resulting use cases of the simulation. In addition to the
variety of DER listed above, applications typically also
include buildings and commercial or industrial facilities.
The challenge, therefore, is that different devices are mod-
eled with different, domain-specific tools. These tools are
often proprietary, which makes it difficult to extend or in-
terconnect them. One solution to couple a wide variety of
different domain-specific models is the Functional Mock-
up Interface (FMI). Initiated by the European automotive
industry, it was developed to standardize the exchange and
co-simulation capabilities of models from different ven-
dors. This standard can be used to export simulation mod-
els as a Functional Mock-up Unit (FMU), which in turn
can be used in other software tools which support the FMI
standard (Nouidui et al., 2019; Blochwitz et al., 2012).
The source code of FMUs can be hidden, so proprietary
models can be shared without revealing sensitive informa-
tion.

The FMI standard is currently supported to different ex-
tents by 134 software tools (Modelica Association, s.a.).
Relevant to the electric power system are the tools EMTP-
RV, EcosimPro, Matlab/Simulink, and ESI SimulationX
which directly support the FMI standard. Other tools such
as Cymdist, PowerFactory, PSCAD, DSATools, PSS/E,
Pandapower, GridDyn, MATPOWER, and OpenDSS can
be supported indirectly by wrapping their Application
Programming Interfaces (APIs) into FMUs using a tool
called SimulatorToFMU. (Nouidui and Wetter, 2017)

In this paper we apply the FMI standard to power sys-
tems by conducting a large-scale grid simulation, which
involves 80,851 FMUs in total, representing 80,000 indi-
vidual customers with co-located PV systems and smart
inverters connected to the grid. Smart inverters are de-
signed to regulate the reactive power output in respect to
locally observed grid voltages, to mitigate the impact of
distributed PV generation on the grid. The simulation is
partitioned in multiple subsections of the grid which are
representative of the different voltage levels. The sub-
sections are again encapsulated in FMUs and connected
with other FMUs to form a large grid simulation. To
decrease simulation time, the parallelism of subsections
was applied and scaled across different compute nodes
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at the Lawrencium High Performance Computing Clus-
ter (HPCC) at Lawrence Berkeley National Laboratory
(LBNL). This paper describes the developed framework
and discusses its scalability and flexibility for large-scale
simulations.

2 Overview
The central part of this paper is the leverage of the FMI
standard, which is used to create simulation models for
a large-scale simulation of an electricity grid. The sce-
nario includes 100 percent PV penetration (i.e., peak PV
production is equal to peak load demand) and voltage-
dependent smart inverter controls at each of the 80,000
individual customers. The transmission grid model is rep-
resentative of a large power grid, the nominal size of a
state in U.S. (i.e., Illinois).

2.1 Functional Mock-up Interface
The FMI standard describes a set of standardized func-
tions to export and link simulation models for the use in
co-simulations. A model which is exported in compliance
with FMI is called an FMU. It consists of the files below
which are zipped as a zip file with the ending . f mu:

• An Extensible Markup Language (XML) file de-
scribing parameters, inputs, outputs, and dependen-
cies of the model.

• Compiled C-code with standardized FMI functions
to evaluate the model.

• Resource data which can contain additional informa-
tion such as documentation, dependency files that are
required by the simulation, or graphical illustrations.

Using the FMI standard as the back-end of the simula-
tion offers some benefits, which include (a) leveraging an
agreed-upon industry standard which is well maintained,
updated, and improved by industry, (b) the ability to utilize
a large variety of model libraries for different domains that
are built and maintained by large industry and research
institutions, (c) the flexibility to couple models of differ-
ent domains (e.g., battery chemistry model with EV drive-
train model coupled with the electric power grid) to form a
single multi-domain co-simulation, (d) industry developed
wrappers for the FMI standard in different programming
languages (e.g., Python, MATLAB, Modelica, Java) that
are well maintained and documented, and (e) a large com-
munity working on the FMI and related standards.

The FMI standard supports two types of simulation
model export. The first mode is the co-simulation (CS)
mode. In CS mode, every model contains its own numeri-
cal solver and provides the result for the next timestep, i.e.,
start time of the model plus step size, as an output. When
a simulation is run in CS mode, the individual models are
simulated with a defined timestep, and forced to advance
time for the step defined. The execution time and order
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Figure 1. Volt/Var control curve for smart inverters.

is managed by an orchestrator, where one iteration com-
pletes when all FMUs are evaluated once. The other mode
is the model exchange (ME) mode. ME models do not
contain their own solver and instead provide the evaluated
system of equations as output. In case of a first-order dif-
ferential equation the output would be the state derivative,
while CS would output the integrated state. An orches-
trator coordinates the evaluation of models and a global
solver solves the coupled models as a network. This way,
the models are run repeatedly, and with a variable time-
step, until inputs and outputs converge to an equilibrium
(Blochwitz et al., 2012). Since CS can only advance in
time, it is often desirable to utilize ME FMUs for simu-
lation, especially when algebraic loops are present. Us-
ing ME FMUs, the solver can iterate back and forth in
time until it finds a solution, while the CS FMU has to
advance time. In case of a step function or other rapid
change in output, the CS would miss the event, while
ME allows to go back in time to find the exact event. A
common workaround with CS FMUs are sufficiently small
timesteps which, on the other hand, increase solving time.
All the models in this paper are exported as FMUs and
simulated by the FMI standard. The FMUs contain both
types of export, depending on the hierarchy level.

2.2 Smart Inverter
To control and guide the implementation of DERs, the
IEEE 1547 international interconnection standard (Basso
et al., 2015) was established. In addition, some U.S. states
implemented additional rules for DERs to comply with.
For example, the California Public Utilities Commission
(CPUC) established Rule 21 (Commission et al., 2014)
for California. With respect to IEEE 1547 and Rule 21,
PV inverters connected to the power grid have to provide
advanced inverter functionalities. These include the capa-
bility of advanced control features like the reactive power
droop control, commonly referred to as Volt/Var control.
The Volt/Var control is illustrated in Figure 1.

With an active Volt/Var control, the inverter controls its
reactive power generation or consumption (on the y-axis)
depending on the local voltage (on the x-axis). If the lo-
cal voltage exceeds a threshold, V2 or V3, the inverter
starts to consume or generate reactive power in a linear re-
sponse, depending on whether voltages are too low or too
high. It saturates (i.e., reaches the maximal reactive power
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absorption or generation) at V1 or V4 accordingly. In
electrical power systems the generation of reactive power
results in an increase in system voltage, and the absorption
of reactive power results in a decrease in system voltage.

A Modelica package called Smart Control of DER
(SCooDER) was developed by LBNL to facilitate the test-
ing and simulation of such devices (Gehbauer et al., 2019).
It contains models of PV generators, inverters, batteries,
sensors, controllers, and other models relating to DER
and power system simulations. The models are intended
for detailed DER simulations and can all be exported as
FMUs. This study used the PV generator and smart in-
verter control models, which are exported as FMUs using
JModelica.

2.3 JModelica
JModelica is an open-source platform supporting simula-
tion, optimization, and analysis of complex dynamic sys-
tems in the Modelica language. It provides tools for ex-
porting and simulating FMUs (JModelica.org, s.a.). All
the simulations in this paper were conducted with compo-
nents of the JModelica package. PyFMI is a Python based
tool for loading and executing FMUs and is part of this
package. It supports simulations in either CS or ME mode
by providing a simple interface to run simulations with the
FMI standard in an open source environment (Andersson
et al., 2016). PyFMI relies on third-part numerical solvers
(i.e., CVODE as default) to solve the system of equations.
CVODE is a C-based solver that can be used to solve sys-
tems of stiff and non-stiff ordinary differential equations
(Cohen et al., 1996).

2.4 Pandapower
For the power grid part of the simulations, Pandapower,
an open-source Python-based tool for simulating and an-
alyzing power systems, was used. Pandapower provides
power flow and optimal power flow (OPF) capabilities,
which are based on PYPOWER, which in turn is based
on the MATPOWER tool. Pandapower ships with a large
library of pre-configured electric grid models that can be
easily loaded and simulated (Thurner et al., 2018). The
next section describes a tool for automated export of Pan-
dapower as an FMU, allowing users to leverage Pan-
dapower’s power systems modeling capabilities.

2.5 SimulatorToFMU
SimulatorToFMU is a Python package developed by
LBNL to wrap the high-level Python API of a third-party
simulator in a Python function, which can then be ex-
ported as an FMU (Nouidui and Wetter, 2017). The util-
ity auto-generates Modelica code that contains a model to
communicate with the simulation tool through its Python
API. It then invokes a Modelica translator to compile the
model and export it as an FMU. It is built to leverage
third-party Modelica compilers (i.e., JModelica, Dymola,
or OpenModelica) to export the model. This helps to en-
sure the forwards and backwards compatibility with new

versions of FMI. SimulatorToFMU requires an XML file,
which specifies the input and the output of the simulator,
as well as the Python function which interacts with the
simulator. The export is implemented as a Python func-
tion call.

2.6 Lawrencium HPC Cluster
For the large-scale simulation of many FMUs, the HPCC
at LBNL was used. It currently includes four clusters with
a total of 924 compute nodes, ranging from 16 to 32 cen-
tral processing units (CPUs) and between 64 to 128 giga-
bytes (GB) of random access memory (RAM) per com-
pute node (LBNL, s.a.). It utilizes large parallel network
file storage to enable fast data transfers between compute
nodes. An overview of the four active stages of Lawren-
cium is given in Table 1.

Name Nodes Cores RAM [GB]
Total per Node per Node

L6 215 32 96
L5 187 20 or 28 64 or 128
L4 142 24 64
L3 380 16 or 20 64

Table 1. Active Lawrencium HPCC stages.

The simulations conducted in this study require a high
number of CPU cores for efficient scale-up, and a mod-
erate number of compute nodes. LR6 was chosen as the
target cluster for this application. Note that all clusters are
connected to a common private network which is utilized
in this work to distribute work across multiple nodes and
clusters. The framework for this work-load distribution
was written in Python and exported as FMU. This FMU
augments the HPCC as a single model to be used in the
co-simulation.

3 Setup
This study’s objective was to demonstrate the scalabil-
ity and versatility of the FMI standard for power system
applications. The setup was therefore focused on power
grids and the impact of high penetration of PV equipped
with smart inverters. What made this setup challenging
was the large amount of controllable PV whose active and
reactive power output impacts one another through the
coupling of the electric power grid. The local grid volt-
age as input to the smart inverter and the reactive power
as output forms a feedback loop, which is challenging to
solve at large scale.

To simulate a realistic power grid, prototypical exam-
ple network models of different voltage levels (i.e., 115
kilovolt (kV) transmission, 20 kV medium-voltage distri-
bution, and 0.4 kV low-voltage distribution) were utilized
to form a whole power grid. The three network models are
shown in Fig. 2, Fig. 3, and Fig. 4. Fig. 2 shows the 42
bus transmission network which is based on IEEE Illinois
Case 57 (Christie and Dabbagchi, 1993), Fig. 3 shows
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Figure 2. IEEE 57 Transmission network.

the medium-voltage distribution network which is based
on the 13 bus CIGRE MV network (Rudion et al., 2006),
and Fig. 4 shows a 146 bus low-voltage distribution net-
work based on the Kerber LV network (Kerber, 2011). All
networks are taken from the Pandapower example mod-
els. Each of the 80,000 load buses in the low-voltage dis-
tribution networks is representative of a single customer
with a PV system, smart inverter, and time-varying base
load. The base loads are taken from the U.S. Department
of Energy (DOE) statistical reference of building types. It
defines 17 load profiles for the U.S. (Department of En-
ergy, s.a.). For this study pre-computed files for the his-
toric weather data of San Francisco, California were used.

3.1 Time-Varying Load Profiles
The 17 DOE load profiles were clustered using the
kMeans algorithm (Krishna and Murty, 1999) with the
objective to establish grouping of data samples by min-
imizing the centroid distances. The optimal number of
clusters, defined as where the loss of the algorithm is less
than 20 percent, was found to be 5 clusters. In a next
step one representative load profile of each cluster was
manually chosen, which reduced the total number of in-
dividual load profiles to 5. This helped to reduce the
overhead of assigning load profiles of similar type (e.g.,
quickservicerestaurant and f ullservicerestaurant). The
individual profiles are shown in Fig. 5 where all load
profiles are scaled by its peak power demand of the se-
lected day, which is June 1st for this study. The manu-
ally selected profiles are highlighted as a solid line, while
the other profiles associated with the cluster are shown as
dotted line in the same color. It can be seen that some
profiles, such as the orange one which centers around
the f ullservicerestaurant profile consists of six DOE
load profiles (i.e., out patient, smallhotel, largeo f f ice,
quickservicerestaurant, and supermarket) while others,
such as the violet one only consist of one DOE load pro-

Figure 3. CIGRE Medium-Voltage network.

Figure 4. Kerber Low-Voltage network.

file (i.e., residential). In either case, the grouping of DOE
profiles was determined by the kMeans clustering. In or-
der to realistically assing the profiles to load buses on the
feeder model, a statistical distribution was defined, based
on data of 50 individual feeder models from a California
utility company.

The distribution of load types is shown in Fig. 6 where
the data for 50 individual feeder models is plotted as blue,
orange, and green crosses for residential, industrial and
commercial customers accordingly. The data is ranked by
the share of residential customers. Two linear fit functions
were established with the residential share as independent
variable, and industrial and commercial share as depen-
dent variables. The evaluated fit is shown as the solid line
in the same color as the base data. For this study, a dis-
tribution based on the mean residential share, which is 46
percent, was chosen. The five load profiles were manually
assigned to one of the three categories, and the total num-
ber of each load profile occurrence was computed. The
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Figure 5. Overview of clustered DOE load profiles for June 1st.

Figure 6. Load type distribution on 50 feeders of a Californian
utility company.

computed mix of load profiles was randomly assigned to
feeder load buses.

Since the networks are only coupled by the voltage at
the interconnection point as input and the resulting active
and reactive power as output, it was possible to implement
scaling factors to scale single customer load demand and
PV generation as aggregated power flow to the nominal of
the example network model. This step avoids the over- or
undersizing of customers, and results in a unique scaling
factor for every load bus and feeder. This allows for a wide
variety of control actuation by the smart inverter across the
simulated power grid.

3.2 Functional Mock-up Units
The architecture to conduct simulations at the Lawren-
cium HPCC involves seven distinct FMUs which are
loaded multiple times and parameterized differently, to re-
sult in a coupled system of 80,851 FMUs in total. The
FMUs use both the ME or CS mode, based on the hierar-
chy level. The architecture is described in Section 3.3 and
Fig. 8. The FMUs are described here:

• PV FMU: This FMU computes the PV generation
based on historic weather data as input. It is a deriva-
tive of the PV model introduced by the Modelica
Buildings Library (MBL) (Wetter et al., 2014) and
modified by the SCooDER package. It uses a de-
tailed sky model to compute incident solar irradia-
tion on a tilted surface. The PV generation was cal-

culated with the total irradiance with a 10 degree
tilt towards south. It was exported as an ME FMU
using JModelica. The path to the Modelica model
is SCooDER.Components.Photovoltaics.Model.PV
andWeather_simple or Buildings.Electrical.AC.
OnePhase.Sources.PV SimpleOriented for the base
version.

• Smart Inverter FMU: The function of the smart
inverter FMU is to regulate the reactive power
output based on locally observed grid voltages,
introduced as Volt/Var control in Section 2.2. It
is a linear response feedback control, based on
the voltage at the interconnection point, with a
deadband (±0.01 p.u.) around the control setpoint
(1.0 p.u.), with saturation (0.95 and 1.05 p.u.).
The maximal reactive output was set to 30 percent
of the inverter size. It was implemented in the
SCooDER package and exported using the ME
API with JModelica. The path to the model is
SCooDER.Components.Controller.Model.voltVar_
param_simple_ f irstorder. It also includes a
first-order response to reflect the internal control
delays of the smart inverter. The response time was
validated with measurements taken at LBNLâĂŹs
FLEXGRID facility. A positive side-effect of the
control delay is the separation of algebraic loops in
the co-simulation.

• Feeder Model FMU: The electrical feeder network
relies on a custom Python function which calls Pan-
dapower (a) at instantiation to create the electrical
model from the example networks, and (b) on run-
time to execute a power flow analysis which com-
putes the nodal voltages based on active and reactive
power flow at the load buses. The base load in the ex-
ample network was scaled based on a time-varying
demand profile, derived from the DOE reference
buildings, as described earlier. To export the func-
tion with the SimulatorToFMU tool, another Python
wrapper function was developed. To make it possible
to scale-up simulations across many compute nodes
at Lawrencium HPCC, the two Python functions are
coupled through a socket communication, illustrated
in Fig. 7. Hereby the Pandapower wrapper was en-
capsulated in a simple web-server and called by the
SimulatorToFMU wrapper using Hypertext Transfer
Protocol (HTTP) requests. Information is exchanged
through JavaScript Object Notation (JSON) sanitized
objects. The advantage of this implementation is the
potential for large scale-up by parallelization across
many compute nodes. Both Python functions were
optimized for fast computation. This results in large
reductions of computation time, because these func-
tions are called at every iteration step of the feeder
model. While a first implementation took up to 15
seconds to complete a single timestep, the finally im-
plemented version completed within an average of

120



125DOI   10.3384/ECP20169 MARCH 23-25, BOULDER, CO, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

200 milliseconds. Further results regarding the scal-
ability are shown in the Results section. The FMU
was exported with SimulatorToFMU using the ME
mode.

• Distribution Model FMU: The electrical distribution
network also uses Pandapower to provide and solve
the electric network model, and it uses the same ar-
chitecture as the Feeder Model FMU. It was exported
with SimulatorToFMU using the CS mode.

• Coupled Feeder FMU: The partitioning at Lawren-
cium HPCC using multiple compute nodes requires
that the FMUs be executed in parallel. This is im-
plemented in the Coupled Feeder FMU, which is a
time-discrete wrapper to a coupled system of one
Feeder Model FMU and PV FMU, and one Smart
Inverter FMU at each of the 146 load buses. While
PV generation is also present at each load bus, only
one PV FMU was loaded, and the generation was
scaled to 1 per unit (p.u.), which resulted in a univari-
ate PV profile for all buses. This is a simplification
made to keep the number of FMUs and connections
within the coupled system low, and to allow for im-
proved solving times. Each load bus also included
the time-varying demand profile which is embedded
in the Feeder Model FMU. The system of FMUs was
coupled using the CoupledFMUModelME2 func-
tion provided by PyFMI. The Python script was
wrapped using the described web-server approach
and once-again exported using the CS API with Sim-
ulatorToFMU. While the exported Coupled Feeder
FMU appears to raise state events, the actual imple-
mentation of the underlying C function does not sup-
port this functionality. However, the wrapped cou-
pled feeder system does support the indication and
handling of state events (e.g., when control loops
saturate). To simplify this assumption, the Coupled
Feeder FMU can be seen as discrete, while the em-
bedded coupled feeder system is continuous with
state event handling by the CVODE solver of PyFMI.
The tolerances for CVODE were modified as 1e-3 for
atol to meet the accuracy of Pandapower.

• Transmission Model FMU: This FMU encapsulates
the transmission model in Pandapwer. It is similarly
structured to the Distribution Model FMU and also
exported as FMU using SimulatorToFMU with the
CS mode.

• Coupled Distribution FMU: The highest level of ag-
gregation is the Coupled Distribution FMU, which
encapsulates one Distribution Model FMU, 13 Cou-
pled Feeder FMUs, and one custom orchestrator. It
was exported using SimulatorToFMU with the CS
mode.

feeder_wrapper.py    

Feeder Model FMU

Pandapower

feeder_server.py

pandapower_wrapper.py

So
ck

et

So
ck

et

HTTP/
JSON

Figure 7. Illustration of the socket-based communication be-
tween the FMU wrapper and the simulator. The simulator can
be hosted locally or remotely across the Lawrencium HPCC.

3.3 Architecture
The architecture for computation reflects the electrical
network by decoupling the system at the different volt-
age levels. As described previously, each load bus of the
transmission model is connected to one coupled distribu-
tion network. Each distribution model is connected to 13
coupled feeder networks, which are then in turn connected
to the PV, smart inverter, and time-varying load at each
feeder load bus. The architecture is illustrated in Fig. 8.

The architecture combines the Feeder Model FMU,
PV FMU, and Smart Inverter FMU into a coupled sys-
tem of FMUs, all exported using the ME mode. This
system is solved for a specific time step using the
CoupledFMUModelME2 function provided by PyFMI,
and is again wrapped as an FMU to form the Coupled
Feeder FMU. The Coupled Feeder FMU reflects a fully
populated feeder where state events of models (e.g., dead-
band or saturation of the smart inverter control) are con-
sidered and solved by PyFMI. The timestep within the
Coupled Feeder FMU is variable based on the solver of
PyFMI. One level higher on the medium voltage distribu-
tion level, the Distribution Model FMU is coupled with
the Coupled Feeder FMU by a custom orchestrator which
employs the CS mode of the FMUs. These FMUs are dis-
crete in time and are invoked based on the high-level time
step. This system of FMUs was again wrapped as another
FMU, namely Coupled Distribution FMU. It was loaded
for each load bus of the Transmission Model FMU and
execution was handled by a custom orchestrator that uti-
lizes PyFMI.

The partitioning of the FMUs on the Lawrencium
HPCC was determined by a total of 546 Coupled Feeder
FMUs, which each were solved in parallel. It was most
practical to assign five Coupled Feeder FMUs to one com-
pute node at HPCC. The LR6 Lawrencium HPC cluster,
which provides 32 logical CPU cores per compute node,
was used for this study. The Transmission Model FMU
consisted of 42 load buses, each connected to one Cou-
pled Distribution FMU. This translates to a total of 12
LR6 compute nodes for the simulation. With 215 compute
nodes available at LR6, this would scale to a maximum of
1,075 Coupled Distribution FMUs. With 1,898 load buses
per Coupled Distribution FMU, the maximal number of
individual customers would be about 2 million. However,
solving clock-time could be traded against scaleup to fur-
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Figure 8. Hierarchical multi-level simulation architecture with high-level inputs and outputs for each FMU. The exchange variables
are active power, P, reactive power, Q, and voltage, v. The three hierarchical voltage layers are transmission, denoted by i with 42
load buses, medium-voltage distribution, denoted by j with 13 load buses, and low-voltage distribution, denoted by k with 146 load
buses.

ther increase the number of individual loads per node.

3.4 Orchestrator
The co-simulation of multiple independent models re-
quires the models to be in a standardized format, in this
case the exported FMUs, and an orchestrator to coordi-
nate the execution of FMUs and to solve the system of
equations. The Coupled Feeder FMU and Coupled Distri-
bution FMU are special cases because they wrap a whole
co-simulation to form a new FMU. In case of the Coupled
Feeder FMU it already includes an orchestrator which in
this case is PyFMI. However the top-level coordination
of the Coupled Distribution FMU and transmission level
is implemented with a custom algorithm which controls
(a) the primary timestep of the model, and (b) the con-
vergence of the model. While the timestep coordination
is implemented as a simple f or loop, the convergence
is more involved by requiring an iteration algorithm and
convergence objective and criteria. The implemented al-
gorithm is limited to a maximal number of 10 iterations,
with a convergence criteria of voltage derivative less than
5e-3 per unit. The iteration sequence starts with the ini-
tialization of the grid model FMU whose computed bus
voltages represent the inputs to the coupled FMU. In order
to support the solver in its action, the voltage derivatives
are dampened by a first-order delay, until an equilibrium is
reached. This delay dampens the control action of the de-
centralized control loops of the underlying Smart Inverter
FMUs, to avoid oscillatory behavior. Note that this delay
does not affect the physical behavior of the system, and is
solely implemented as part of the solving algorithm. The
coupled FMU is evaluated in parallel, and the resulting ac-
tive and reactive power at the feeder heads are fed directly
into a last evaluation of the grid model FMU. The bus volt-
age derivatives are computed, and the system is checked
for convergence. If it did not converge and if it also did
not reach the maximal number of iterations, another itera-

tion is initiated. Otherwise the iteration is terminated and
the result returned.

One drawback with coupling the FMUs exported with
the CS mode is the timestep control. CS FMUs can only
advance time which is problematic when seeking the con-
vergence of a system at a defined simulation time. The
workaround are sufficiently small timesteps where dy-
namics within the FMU are close to constant. In this case
the internal timestep for an iteration was set to 10 millisec-
onds.

4 Results
The co-simulation was conducted for one sunny day with
an hourly timestep on the transmission level. As described
earlier, the low-level Coupled Feeder FMU, which encap-
sulates the PV generation, time-varying base load, and
smart inverter, was solved with a variable timestep. The
Fig. 9 provides an overview of the smart inverter actua-
tion and solving time for all of the 80,000 individual cus-
tomers.

The first subplot shows the statistics of the time-varying
base load as boxplot normalized to each customers nomi-
nal active power demand, for each hour of the simulation.
The statistics are based on each of the 80,000 individual
customers. The secondary axis of the first subplot, in red,
shows the univariate PV profile which is applied to all cus-
tomers, also normalized to the customer size. The sec-
ond subplot shows the distribution of smart inverter con-
trol actuation as reactive power scaled to the nominal reac-
tive power of each customer. The third subplot shows the
distribution of feeder head voltage, as determined by the
transmission and medium-voltage distribution network. It
is scaled to the nominal feeder voltage. The fourth sub-
plot shows statistics of the solving time, as boxplots on
the primary axis, and maximal number of iterations, in red
on the secondary axis. Both statistics are based on the
546 Coupled Feeder FMUs. The mean simulation time
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Figure 9. Overview of full-scale grid results with 80,000 indi-
vidual customers.

per iteration is 25 seconds across all timesteps, whereas
the standard deviation ranges between 25 to 175 seconds,
depending on the timestep.

5 Discussion and Future Work
This paper successfully demonstrated the distributed co-
simulation of various components of an electric power
grid. This includes time-varying load and PV generation,
feedback control loop of a smart inverter with Volt/Var
control, and electrical coupling through multiple voltage
levels.

While the setup simplified the complexity of electric
distribution networks, customer load variation, and site-
dependent PV generation, it demonstrated the capabili-
ties of the developed SimulatorToFMU tool and the FMI
overall to solve complex large-scale cross-platform co-
simulation setups. The setup included individually vali-
dated models from publicly available Modelica libraries,
in case of the Smart Inverter FMU and PV FMU, or Pan-
dapower package, in case of the grid models. The coupled
system of FMUs was solved using the PyFMI package
which was developed and validated by its developer Mod-
elon. While the whole system results could not compared
to other simulators, mainly due to lack of availability to
couple those individual models, which was the motivation
of this paper, the project team believes that the performed
validations are sufficient.

The introduced simulation setup exploited the poten-

tial of reduced complexity for high-level aggregated mod-
els, while keeping a full detail on the lower-level models.
An aggregation of 80,000 individual customers was used
to represent the interaction on a U.S. state sized electric
power grid. The level of scale, i.e., about 50 times scaleup
in this example, was achieved by reducing the number
of feeders per substation to one, as well as the number
of medium-voltage distribution circuits per transmission
node to one. One example where the low-level detail of
individual customers is important would an over-voltage
event to trip smart inverters which in turn would suddenly
reduce the voltage, and could end-up with a cascading ef-
fect triggering neighboring substations or feeders. In par-
ticular the setup of a coupled co-simulation system being
wrapped as an FMU is important to capture such state
events of smart inverters. The aim of this wrapped system
was to simplify the algorithm and to facilitate a effective
separation of low-level FMUs (i.e., PV FMU and Smart
Inverter FMU), mid-level FMUs (i.e., Distribution Model
FMU and Coupled Feeder FMU), and high-level FMUs
(i.e., Transmission Model FMU and Coupled Distribution
FMU) with the objective of reducing solving time. The
complexity with this setup was the need to evaluate the
coupled systems in parallel, while the coupling on higher
levels required a serial evaluation. In addition the parti-
tioning on compute nodes on the Lawrencium HPCC re-
quired the discrete separation of the models on compute
nodes. One drawback of the current implementation is
the limitation that state events cannot be propagated to
higher-level FMUs. In case of the cascade effect described
earlier, a higher-level distribution or transmission system
would not recognize the event until the next timestep was
reached. This limitation originates in the implementation
of the developed SimulatorToFMU tool to export Python
scripts as FMUs. As described in Section 3.2, the Cou-
pled Feeder FMU appears to raise state events, but the ac-
tual implementation of the underlaying C function does
not support this functionality. This is a recognized limi-
tation of SimulatorToFMU, and it is being discussed for
future implementation by providing a zero-crossing func-
tion to project and raise such state events.

Another simplification taken in this paper was the ex-
port of the high-level FMUs with the CS API, while lower-
level FMUs use the ME API. As described in the Intro-
duction, ME allows to extract derivatives and roll-back
time, which are important features to solve coupled sys-
tems. The ME model is therefore generally preferred for
the application in power systems, especially when alge-
braic loops (e.g., from feedback controllers) are present.
However ME requires an external solver and handling of
events, whereas CS internally solves this problem. It is
therefore easier to interface with CS FMUs, to build a cus-
tomized orchestrator. In addition, the added functionality
of state events would not be exploited because of the pre-
viously discussed limitation of SimulatorToFMU.

For future work, simulations with real load profiles
could be done. Due to the lack of open source load pro-
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files based on real measurements, this study used the sim-
ulated OpenEI load profiles for DOE reference buildings.
This results in less variety of loads and therefore less real-
istic scenarios. Nevertheless, realistic and authentic data
are not necessary to proof the functionality of the large
scale simulation itself. The connection between all levels
of FMUs was proven in this paper. For more detailed real
world scenarios simulated with the developed platform, a
higher variety of real load profiles would be preferable.

In future it also might be possible to upgrade the archi-
tecture with the FMI 3.0 standard (alpha version released).
The proposed functionalities include ports and icons, ar-
ray variables, clocks and hybrid co-simulation, binary data
type, intermediate output values, and source code FMUs
(FMI 3.0, 2018). Especially the clocks and hybrid co-
simulation functionality, which allows the triggering of
events in co-simulation mode, can have promising appli-
cations in large scale simulations. Longer timesteps can
be used, without missing events in single FMUs and the
resulting effects those effects would have on other FMUs.
Because of the industry based nature of the FMI standard
and the growing support of it, further developments to im-
prove the usability and capabilities of the FMI can be ex-
pected.

6 Conclusion
The results of this paper demonstrate that the FMI stan-
dard offers a promising way to create large scale simula-
tions. It is an easy and convenient way to combine a wide
variety of models on a large scale, but to still simulate
them with a high level of detail. The developed Simula-
torToFMU tool enables users to further increase the num-
ber of available model libraries and simulation tools span-
ning into the power systems domain. While this paper
focused on PV systems with smart inverters, many future
scenarios involving multi-domain models could be con-
ducted. Examples are detailed building simulations to re-
place simple load profiles, electric vehicles with individ-
ual availability and constraints, or advanced control sys-
tems such as Model Predictive Control for building heat-
ing, ventilation, and air conditioning systems to assess
load shifting capabilities on a large scale.

Simulating large parts of the power grid with multi-
level and high-fidelity resources provide a more realis-
tic result compared to plain simulations of single voltage
level and aggregated generation. By connecting many dis-
tribution feeders with a transmission grid model, the im-
pact of feeders on one another is taken into account, which
helps to reveal global grid challenges such as steep ramp-
ing demand in a high-PV deployment scenario.

This paper also demonstrated the ability of FMI and
other tools to scaleup to about eighty thousand individ-
ual FMUs evaluated in a co-simulation. The multi-level
hierarchical partitioning of the simulation into many par-
allel models, which run independently on different com-
pute nodes at the Lawrencium HPCC, greatly reduces the

simulation time and allows for a fidelity which is often not
achievable on a single computer.
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