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Abstract
This paper presents a generalized modeling formulation
for implementation of dynamical system models that ex-
hibit sliding behavior. The proposed formulation is based
on Filippov theory, and is implemented using Modelica.
The main advantage of the developed framework is that
it effectively removes numerical chattering and trajectory
deadlock. The robustness of the formulation is assessed
considering three example system models: a stick-slip
system, a relay feedback system and an anti-windup Pro-
portional Integral (PI) controller in a power system appli-
cation, i.e. an automatic voltage controller.
Keywords: Discontinuity, non-smooth, Filippov, hybrid
dynamics, chattering.

1 Introduction
The Modelica Language is becoming an industry standard
to model dynamical systems described by a set of Ordi-
nary Differential Equations (ODEs) or Differential Alge-
braic Equations (DAEs) with mixed continuous and dis-
crete variables, known as hybrid systems (Fritzson, 2014).
A subclass of hybrid systems referred to as Filippov sys-
tems (Filippov, 1988) are those where discontinuities ap-
pear in vector fields, i.e. in the right hand side of the
model’s equations. If the solution of Filippov systems en-
ters into a constrained subset of the state space, known as
sliding, the formalism given by Filippov (Filippov, 1988)
allows defining a vector field on the sliding surface to
properly handle discontinuities.

A Modelica implementation of the Filippov sys-
tems without considering Filippov formalism leads to
chattering-Zeno-type deadlocks, which consists of in-
finitely many instantaneous switches of the discrete vari-
ables during time domain simulation (Aljarbouh and Cail-
laud, 2016). This significantly restrains the performance
of the solvers of Modelica simulation tools and can lead
to a simulation halt. More importantly, such chattering
does not represent the complicated real physical system
chattering (Levant, 2010). Therefore a generalized formu-
lation is required for smooth continuation of trajectories.
This paper fills this gap.

The authors in (Aljarbouh and Caillaud, 2016) and (Al-
jarbouh et al., 2016) discussed chattering problem of Fil-

ippov systems in Modelica, using OpenModelica. How-
ever, to solve this problem, a framework based on the
Functional Mock-up Interface standard (FMI) and Acu-
men (Taha et al., 2015) is proposed. The authors in (Suski
and Pytlak, 2017) presented a race car model based on
the Filippov formalism implemented in OpenModelica,
but did not provide implementation details and a gener-
alized formulation. It is worth mentioning that there exist
heuristic methods to solve the chattering issues (Bonilla
et al., 2011). However, such methods lack a systematic
generalization.

There exists several methods to formulate hybrid sys-
tems as smooth systems, for example are: linear comple-
mentarity description (Pfeiffer and Glocker, 1996); aug-
mented Lagrangian approach (Leine and Nijmeijer, 2013);
parameterized curve description (Otter et al., 1999) and
then use a dedicated numerical method to solve time do-
main simulations. Such techniques require special treat-
ment of numerical methods and do not model precisely
discrete (non-smooth) events (Leine and Nijmeijer, 2013).
Considering this, we propose a general purpose hybrid de-
sign for implementing Filippov systems using Modelica
that allows smooth integration along chattering regions.

The main contributions of this paper are as follows:

• A generic formulation based on Filippov Theory
(FT) for the implementation and direct numerical
simulation of Filippov systems with one sliding sur-
face using Modelica is proposed.

• A validation of the proposed formulation is per-
formed comparing the results with a Matlab imple-
mentation and via simulation in two Modelica tools,
namely OpenModelica and Dymola.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a background on FT. Section 3 presents the
proposed generalized formulation for the implementation
of Filippov system models using Modelica. Case studies
are discussed in Section 4 where three examples are pre-
sented: a stick-slip system, a relay feedback system and an
anti-windup PI controller in a power system voltage con-
trol application. Conclusions and future work directions
are drawn in Section 5.
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2 Filippov Systems
Filippov systems are dynamical system models with dis-
continuous right-hand side first-order ordinary differen-
tial equations (Filippov, 1988). Consider the following
switched dynamical system of equations:

ẋ = f (x) =

{
f1(x) when h(x)< 0
f2(x) when h(x)> 0

(1)

where, the event function h : Rn →R and an initial condi-
tion x(t0) = x0 are known. The state space Rn is separated
by a hyper-surface Σ into two regions R1 and R2 as fol-
lows:

R1 = {x ∈ Rn | h(x)< 0},
R2 = {x ∈ Rn | h(x)> 0},
Σ = {x ∈ Rn | h(x) = 0},

(2)

such that Rn = R1∪Σ∪R2, assuming at x ∈ Σ the gradient
of h never vanishes, i.e. hx(x) �= 0 for all x ∈ Σ.

The Filippov convex method (Filippov, 1988) states that
the vector field on the surface of discontinuity is a convex
combination of the two vector fields in the different re-
gions of the state-space:

ẋ = f (x) =




f1(x), x ∈ R1

co{ f1(x), f2(x)}, x ∈ Σ
f2(x), x ∈ R2

(3)

where, co( f1, f2) is the minimal closed convex set con-
taining f1 and f2, i.e.

co{ f1, f2}= { fF : x ∈ Rn → Rn : fF = (1−α) f1 +α f2},
(4)

where α ∈ [0,1].
Consider the trajectory starting at t0 with ẋ =

f1(x), with x(t0) = x0 reaches at Σ in finite time (tk). Then
at tk the trajectory can cross, slide or exit Σ. In such situa-
tion, the first order theory given by Filippov explains how
to solve these equations as summarized in the following
section.

2.1 Filippov first order theory
Filippov first order theory defines the vector field if the
solution approaches the discontinuous surface. Let x ∈ Σ
and n(x) is the unit normal to Σ at x i.e. n(x) = hx(x)

‖hx(x)‖
where, hx(x) = ∇h(x) and ∇ = ∂

∂x ; the components of
f1(x) and f2(x) onto the normal to the Σ are nT (x) f1(x)
and nT (x) f2(x) respectively.

2.1.1 Transversal crossing
If x ∈ Σ, then

(nT (x) f1(x)).(nT (x) f2(x))> 0, (5)

i.e. the trajectory leaves Σ. The system will return to R1
with f = f1, if nT (x) f1(x)< 0 or it will proceed to R2 with
f = f2 (see Fig. 1[I]), if nT (x) f1(x)> 0.

f1(x)

f1(x)
f1(x)

f2(x)
f2(x)

f2(x)

Σ

Σ

n(x) n(x)x(t)

x(t) x(t)

R2 R2

R1
R1

a1 b1

[I] [II]

Figure 1. Different regions of the state space with [I] transversal
and [II] sliding trajectory.

2.1.2 Sliding mode
Sliding occurs, at x ∈ Σ if,

(nT (x) f1(x)).(nT (x) f2(x))< 0 . (6)

An unique attracting sliding mode will occur if,

(nT (x) f1(x))> 0 and (nT (x) f2(x))< 0, x ∈ Σ , (7)

and the solution does not leave Σ (see a1 in Fig. 1[II]).
During sliding the time derivative fF is given by:

fF(x) = (1−α(x)) f1(x)+α(x) f2(x) , (8)

where, α(x) is given by [proof, see (Filippov, 1988)]:

α(x) =
nT (x) f1(x)

nT (x)( f1(x)− f2(x))
· (9)

If the signs are opposite in (7) a repulsive sliding mode
will occur. In such a case, the solution is not unique, and
thus, is not considered in this work.

2.1.3 Exit conditions
During sliding mode if one of the vector fields starts to
point away, the solution continues above or below the slid-
ing surface (see b1 in Fig. 1[II]). The exit point is calcu-
lated by finding either the root α(x) = 0 or α(x) = 1 as
appropriate. The following remarks are relevant:

• If fF(x) �= f1(x), fF(x) �= f2(x) such a solution is of-
ten called a sliding motion.

• If at the point of discontinuity, condition (6) becomes
≤ 0 and f1(x) �= f2(x) then a continuous vector-
valued function fF(x) is given which determines the
velocity of motion ẋ = fF(x) along the discontinu-
ity line. If nT (x) f1(x) = 0 then fF(x) = f1(x); if
nT (x) f2(x) = 0 then fF(x) = f2(x).

3 Filippov Theory Based Formulation
Filippov systems can be implemented in a computer
language considering event driven or time stepping ap-
proaches (Dieci and Lopez, 2012). The former method
simulates the system model by detecting the actual event
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Figure 2. Generalized state transitions of Filippov systems.

time whereas the latter method without event detection
(Piiroinen and Kuznetsov, 2008).

Modelica allows the conditional equations become ac-
tivated or deactivated at the event instant (Fritzson, 2014)
and the exact event instant can be detected during time
domain simulation. Utilizing this Modelica language fea-
ture, in the following, we propose a formulation consider-
ing an accurate event detection method for the implemen-
tation of Filippov system models in Modelica.

3.1 General purpose design

According to FT, a system can have three states, the two
states for h(x) < 0 (R1) and h(x) > 0 (R2), and a new
state called SLIDING, characterized by h(x) = 0. For im-
plementation using Modelica, it is convenient to introduce
two discrete variables, say z1 and z2, into the differential
equations, as follows:

ẋ = f1(x)z1(1− z2)+ f2(x)(1− z1)(1− z2)+ fF(x)z2 .
(10)

Observe that in the above equation, depending on the
values of z1 and z2 (e.g. 1 or 0), a proper vector field needs
to be activated during time domain simulation. Lets define
r1 = hT

x (x) f1(x) and r2 = hT
x (x) f2(x) and Fig. 2 shows the

changes in (z1,z2) for the three states and the conditions to
move from one state to another. All these conditions are
based on FT and are evaluated the moment at which the
event function (h(x)) crosses zero.

In the SLIDING state the value of z2 = 1. This automat-
ically deactivates f1(x) and f2(x) (see (10)) without the
need of changing the value of z1. So the previous value
(pre(z1)) is retained. The sliding vector field fF(x) is de-
rived explicitly according to (8). The exit conditions are
defined based on (9). In particular, α(x) = 0 and α(x) = 1
are the conditions that indicate to move to the R1 and R2
regions, respectively.

The case studies below show the steps of the pro-
posed approach followed during time domain simulation
in Modelica tools.

4 Case Studies
In this section we discuss the implementation and val-
idation of the Filippov systems in Modelica consider-
ing our generalized formulation. The case studies are
posted online: https://github.com/ALSETLab/
Modelica_Fillipov_Sliding_Models.

4.1 Example 1: Stick-slip system
Consider the two-dimensional system (so-called stick-slip
system) (Dieci and Lopez, 2009, 2012)

ẋ = f (x) =

{
f1(x) when h(x)< 0
f2(x) when h(x)> 0

with

f1(x) =
(

x2
−x1 +

1
1.2−x2

)
, f2(x) =

(
x2

−x1 − 1
0.8+x2

)
,

and h(x) = x2 − 0.2. This system has a single switching
manifold with two dynamic states.

4.2 Direct implementation
A direct implementation of this system using Modelica is
as follows:

model S t i c k _ s l i p " S t i c k−S l i p System "
Real x1 ( s t a r t =0) ;
Rea l x2 ( s t a r t =0) ;
I n t e g e r z1 ( s t a r t =1) ;
Rea l h ;

equat ion
der ( x1 ) = x2∗z1 + x2∗(1− z1 ) ;
der ( x2 ) = (−x1 + ( 1 / ( 1 . 2− x2 ) ) ) ∗z1+(−x1−

( 1 / ( 0 . 8 + x2 ) ) ) ∗(1− z1 ) ;
h = x2 − 0 . 2 ;
when h < 0 then

z1 = 1 ;
elsewhen h > 0 then

z1 = 0 ;
end when ;

end S t i c k _ s l i p ;

OpenModelica and Dymola were used to simulate this
example, however these tools halt when simulating this
simple model. In OpenModelica, all solvers fail to sim-
ulate and report an error message: Chattering detected
around time 0.221654558425..0.221654756475 (100 state
events in a row with a total time delta less than the step
size 0.001). On the other hand, Dymola’s solver DASSL
fails to continue the simulation. However some solvers for
example: RkFix2 and Euler allows to continue simulation
exposing chattering as shown in Fig. 3. Because of unnec-
essary chattering during the simulation, the results are not
mathematically correct and it is not possible to understand
the dynamic behavior of the real physical system.

4.2.1 Implementation using Filippov theory

The surface Σ is defined by zero of h(x) = x2 −0.2. Here,
hx(x) = [ δh(x)

δx1

δh(x)
δx2

]T = [0 1]T , thus on Σ (i.e. x2 =
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Figure 3. Time derivative of state variables (ẋ1, ẋ2) of stick-slip
system without Filippov sliding simulated in Dymola.

0.2), calculating,

r1 = (0 1)
(

x2
−x1 +

1
1.2−x2

)
=−x1 +1 ,

r2 = (0 1)
(

x2
−x1 − 1

0.8+x2

)
=−x1 −1 .

Therefore according to (6), x1 ∈ (−1,1) there will be an
attractive sliding mode on Σ. This sliding vector field on
Σ is calculated using equations (8,9):

α(x) =
nT (x) f1(x)

nT (x)( f1(x)− f2(x))
=

−x1 +1
2

,

fF(x) =
(

x2
0

)
=

(
0.2
0

)
,

which means that on the sliding surface Σ the x1 state will
grow linearly until reaching the value x1 = 1, at which the
point the trajectory will leave Σ with vector field f1 as for
x1 = 1 the α(x) = 0.

Using the proposed FT based approach, the expressions
derived above can be used to implement the model as fol-
lows (equation part of the model is given):

der ( x1 ) = x2∗z1∗(1− z2 ) + x2∗(1− z1 ) ∗(1− z2 )
+ x2∗z2 ;

der ( x2 ) = (−x1 + ( 1 / ( 1 . 2− x2 ) ) ) ∗z1∗(1− z2 ) +
(−x1− ( 1 / ( 0 . 8 + x2 ) ) ) ∗(1− z1 ) ∗(1− z2 ) ;

h = x2 − 0 . 2 ;
r1 = −x1 +1;
r2 = −x1−1 ;
a = (−x1 +1) / 2 ;
z e r o C r o s s i n g . u = h ;
z e r o C r o s s i n g 1 . u = (−x1 +1) / 2 ;
z e r o C r o s s i n g 2 . u = 1−a ;
when z e r o C r o s s i n g . y then

i f r1 ∗ r2 < 0 then
i f r1 > 0 and r2 < 0 then
z1 = p r e ( z1 ) ;
z2 = 1 ;
e l s e
z1 = p r e ( z1 ) ;
z2 = 0 ;
end i f ;
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Figure 4. Time derivative of state variable (ẋ1) of stick-slip sys-
tem without (NF) and with (F) Filippov theory simulated in Dy-
mola.
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Figure 5. Periodic trajectories of the stick-slip system obtained
in different simulation software tools.

e l s e i f r1 ∗ r2 > 0 then
i f r1 < 0 then
z1 = 1 ;
z2 = 0 ;
e l s e i f r1 > 0 then
z1 = 0 ;
z2 = 0 ;
e l s e
z1 = p r e ( z1 ) ;
z2 = 0 ;
end i f ;

e l s e
z1 = p r e ( z1 ) ;
z2 = 0 ;

end i f ;
elsewhen z e r o C r o s s i n g 1 . y and p r e ( z2 ) == 1

then
z1 = 1 ;
z2 = 0 ;

elsewhen z e r o C r o s s i n g 2 . y and p r e ( z2 ) == 1
then

z1 = 0 ;
z2 = 0 ;

end when ;

Using this implementation the simulation of this system
can be successfully carried out in both OpenModelica and
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Dymola without numerical issues. Results are compared
in Fig. 4. Observe that considering the Filippov sliding
condition the simulation continues without any chattering.
For further validation of the proposed generalized formu-
lation and its implementation, the trajectories in Fig. 5 ob-
tained using Modelica tools (OpenModelica and Dymola)
and compared with the results obtained using Matlab uti-
lizing the method in (Piiroinen and Kuznetsov, 2008).

4.3 Example 2: A relay feedback system
A relay feedback system with single-input and single-
output is as follows (Piiroinen and Kuznetsov, 2008):

ẋ = AAAx+BBBu
y =CCCx
u =−sgn(y)

(11)

or

ẋ =

{
AAAx+BBB, when CCCx < 0
AAAx−BBB, when CCCx > 0

(12)

where,

AAA =




−(2ζ ω +1) 1 0
−(2ζ ω +ω2) 0 1

−ω2 0 0


 ,BBB =




1
−2σ

1


 ,CCC =




1
0
0


 .

The state vector of this model is x = [x1,x2,x3]
T and the

discontinuity surface Σ is defined by h(x) = x1. Re-writing
the dynamical system according to FT,

ẋ = f (x) =

{
f1(x) when h(x)< 0
f2(x) when h(x)> 0

(13)

with

f1(x) =




−(2ζ ω +1)x1 + x2 +1
−(2ζ ω +ω2)x1 + x3 −2σ

−ω2x1 +1


 ,

f2(x) =




−(2ζ ω +1)x1 + x2 −1
−(2ζ ω +ω2)x1 + x3 +2σ

−ω2x1 −1


 .

Here, hx(x) = [1 0 0]T , thus on Σ (i.e. x1 = 0), calcu-
lating,

r1 =−(2ζ ω +1)x1 + x2 +1 ,

r2 =−(2ζ ω +1)x1 + x2 −1 .

The sliding vector field on Σ obtained using equations
(8,9):

α(x) = (−(2ζ ω +1)x1 + x2 +1)/2 ,

fF(x) =




0
b+4(−(2ζ ω +1)x1 + x2 +1)/2
c−2(−(2ζ ω +1)x1 + x2 +1)/2


 ,

where b =−(2ζ ω +ω2)x1+x3−2σ and c =−ω2x1+1.
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Figure 6. Time derivative of state variable (ẋ1) of the relay feed-
back system model without (NF) and with (F) Filippov theory
simulated in Dymola.
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Figure 7. Time derivative of state variable (ẋ2) of the relay feed-
back system model without (NF) and with (F) Filippov theory
simulated in Dymola.

Similarly to the previous example, we have imple-
mented both in direct form and using the proposed formu-
lation. The parameters considered are: ζ = 0.05,ω = 25
and σ = −1. Using the Modelica language similar is-
sues (chattering and trajectory deadlock) as in the pre-
vious example arise in OpenModelica and Dymola dur-
ing time domain simulation without considering FT and
the simulation results obtained using Dymola are shown
in Figs. 6-7. Observe that chattering does not occur for
the model implemented following the proposed approach
based on FT. Finally the validation of the results of Model-
ica tools against the implementation in Matlab (Piiroinen
and Kuznetsov, 2008) is shown in Fig. 8.

4.4 Example 3: Anti-windup PI controller
The IEEE Standard 421.5-2016 recommends an anti-
windup (AW) or non-windup PI controller (IEEE, 2016)
model for dynamic analysis of power systems. Mathemat-
ically, the model is:

If y ≥ wmax : w = wmax and ẋ = 0 ,

If y ≤ wmin : w = wmin and ẋ = 0 ,

Otherwise : w = y = kpu+ x and ẋ = kiu .

(14)

50 10.3384/ECP20169         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020   MARCH 23-25, BOULDER, CO, USA 46



-0.01

0

0.01

2

0.02

x
1

0.03

1

x
3

0

0.04

x
2

0.05

0
-2

-1

Dymola

OpenModelica

Matlab

Figure 8. State space response for the relay feedback system
obtained in different simulation software tools.

where kp, ki, are the proportional, integral gains of the
controller, respectively; x is the controller’s state variable;
and u, y and w are the control input, unconstrained output
and constrained output respectively.

The discontinuous nature of the integral state variable
of this model can lead to numerical issues such as tra-
jectory deadlock and chattering. Only ad hoc approaches
have been proposed to handle such issues (Hiskens, 2012;
Fabozzi et al., 2017). In the authors preliminary results, it
was shown that the formalism given by Filippov can effec-
tively remove those numerical issues (Murad et al., 2019).
In this work, the AW PI controller is utilized in a power
system voltage control application namely an Automatic
Voltage Controller (AVR), which is implemented using
the proposed formulation in Modelica. In addition, the
dynamic response is compared to a deadband (DB) based
technique proposed in (Hiskens, 2012) and it is shown
that the proposed approach achieves a smooth transient re-
sponse.

4.4.1 Single machine infinite bus system

Consider a simple three bus power system network with
a single machine shown in Fig. 9. The generator in bus
1 is equipped with an AW PI controller based AVR and
a power system stabilizer as depicted in Fig. 10. The dy-
namics of this Single Machine Infinite Bus (SMIB) system
is described by a set of DAEs in the following form (Mi-
lano, 2010),

ẋ = f (x,y) ,
0 = g(x,y) ,

(15)

where x and y are the vector of state and algebraic vari-
ables respectively.

Then generator in Fig. 9 (Gen) is modelled using a third
order model (Milano, 2010), and the switching manifold
for the maximum of the AVR, h(x) = kpva + xi − vmax.
When h(x) < 0, the differential equations of the SMIB
system are:

Gen

v1 � θ1

jx13

v3 � θ3

jx23

pl + jql

v20 � θ20

Figure 9. A single generator connected to an infinite bus.
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Figure 10. Scheme of AVR and power system stabilizer.

δ̇ = ω (16)

ω̇ =
1
M
(pm − pe −Dω) (17)

ė′q =
1

T ′
d0
(v f −

xd

x′d
e′q +

xd − x′d
x′d

v1cos(δ −θ1)) (18)

v̇a = (ka(vref + c3 − v1)− va)/Ta (19)
ẋi = kiva (20)

ṡ1 =
1
T2

(c2 − s1) . (21)

The notations and algebraic equations are given in (Mu-
rad et al., 2019). When the v f reaches to its max (vmax)
then (18) and (20) will be switched and all other state vari-
ables will remain same, as follows:

ė′q =
1

T ′
d0
(vmax − xd

x′d
e′q +

xd − x′d
x′d

v1cos(δ −θ1)) (22)

ẋi = 0 (23)

4.4.2 Implementation using Filippov theory
We consider f1(x,y) is (16)-(21) and f2(x,y) is (16),
(17), (22), (19), (23) and (21). Calculating, hx(x) =
[ ∂h(x)

∂x1

∂h(x)
∂x2

... ∂h(x)
∂x6

]T = [0 0 0 kp 1 0]T , and the nor-
mal to the switching surface is: nT (x) = [0 0 0 kp 1 0]. On
the switching manifold, calculating

hT
x (x) f1(x,y) = kp((ka(vref + c3 − v1)− va)/Ta )+ kiva ,

hT
x (x) f2(x,y) = kp((ka(vref + c3 − v1)− va)/Ta ) .

Therefore according to (6), if an attractive sliding occurs
on Σ, then using equation (8) α(x,y) is given by:

α(x,y) =
kp((ka(vref + c3 − v1)− va)/Ta )+ kiva

kiva
.

According to (9), during the sliding requires (23):

fF(x,y) =−kp((ka(vref + c3 − v1)− va)/Ta ) .

These expressions are used in the Modelica implementa-
tion.
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Table 1. PARAMETERS OF THE SMIB NETWORK

Name Values

Generator M = 8, D = 0, x′d = 0.25, xd = 1,
pm = 1, T ′

d0 = 6
Line x13 = 0.3, x23 = 0.5
Load pl0 = 0.7, ql0 = 0.01
AVR ka = 2, Ta = 0.005, kp = 5.5, ki = 35,

vmax = 1.6, vmin =−1.5, vref = 1
PSS ks = 1.5, T1 = 0.23, T2 = 0.12

1.45 1.50 1.55

-0.2

0.0

0.2

0.4

0.6

0.8

xi

der(xi) [DB]

der(xi) [F]

Dymola trial version, see www.dymola.com

Figure 11. Time derivative of the integrator state variable (ẋi) in
the AW PI controller with respect to the state variable (ẋi) using
DB and Filippov (F) methods simulated in Dymola.

4.4.3 Simulation Results

The SMIB system is implemented considering the FT-
based formulation and the DB based method in Modelica.
The DB implementation is the same as in (Hiskens, 2012)
and DB value used is 0.0001. The parameters of different
components of the SMIB system are given in Table 1 and
initial values for all variables are given in (Murad et al.,
2019).

The SMIB system is simulated by increasing the volt-
age reference set-point (vref = 1.01) and load (pl0 = 0.71
pu, ql0 = 0.016 pu) at t = 5 s. Figs. 11 and 12 show
the response of the time derivative of integrator state vari-
able (ẋi) and field voltage (v f ) for both DB and FT based
method’s respectively. Following the disturbance, the in-
tegrator state variable (xi) enters into a deadlock region
and using the DB based implementation it shows chat-
tering. Therefore the field voltage (v f ) shows numerous
switching bounded by the DB (see zoom in Fig. 12).
However, a smooth response is achieved using FT based
method. In addition, except for the chattering the FT based
model shows the same trajectories. It is important to men-
tion that without DB or FT based techniques simulation in
OpenModelica fails for all solvers while DASSL fails for
Dymola.

Time(s)

5 6 7 8 9 10 11 12

v
f

1.42

1.44

1.46

1.48
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1.52

1.54

1.56

1.58

1.6

1.62

DB

F

5 5.1 5.2 5.3 5.4 5.5 5.6

1.5998

1.5999

1.6

Figure 12. Trajectories of the field voltage (v f ) using DB and
Filippov (F) methods simulated in Dymola.

5 Conclusions
A generic formulation to implement Filippov system
models with sliding motion using Modelica is proposed.
Three examples are presented considering such a general-
purpose design with a single sliding surface. Simulation
results in different Modelica tools indicate accurate dy-
namic response without any chattering or simulation halt.

Future work will extend the FT-based design for multi-
ple discontinuity surface (Piiroinen and Kuznetsov, 2008).
In addition a numerical performance of FT-based AW PI
controller will be investigated considering the Modelica
power system library: OpenIPSL (Vanfretti et al., 2016).
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