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Abstract 
This paper communicates on the implementation of 
Physics-based Solving in the Modelon Jet Propulsion 
library, driven by requirements from industrial jet 
engine design workflows. On- and off-design simulation 
modes are typically sequential and iterative steps in a 
model-based design process of jet engines. The solution 
Modelon provides – based on the Jet Propulsion Library, 
Optimica Compiler Toolkit, FMI Toolbox and pyFMI – 
enables performing a robust design of a gas turbine for 
a design point satisfying relevant constraints of typical 
off-design scenarios. This paper illustrates this 
workflow with component and system level examples. 
Keywords:     Jet Propulsion, Physics-based Solving, 
Steady-State, On-Design, Off-Design, Optimization 

1 Introduction 
The sizing of a gas turbine is typically performed over a 
set of different scenarios. The design point would be the 
first step in identifying basic parameters as it would be 
the most constraining scenario for most components. 
Computing the component parameters from the 
boundary conditions on this point will be qualified as 
on-design simulation. For a jet engine, this would 
typically be the cruise mode at the top of climb. Other 
scenarios will be run to validate the design for 
conditions that are relevant for the expected operation 
such as takeoff or landing. In addition to the validations, 
iterative tuning of variables (e.g., cooling flow fraction) 
can be included – these would be named off-design 
simulations. 
Running these scenarios in a disconnected fashion 
would be tedious and error prone. Model Based System 
Engineering applied to the design of gas turbines 
provides a relevant workflow that is addressed in this 
paper and serves as source of requirements for 
augmenting the Jet Propulsion library with additional 
features. Section 2 of this paper discusses such 
workflows, the resulting requirements and the 
associated implementation within Modelon Jet 
Propulsion Library. Section 3 provides some key 
benefits of using Modelica language and Modelon 
Optimica Compiler Toolkit to address this problem. 
Section 4 presents two component examples and 

discusses their specific on- and off-design behaviors. 
Section 5 illustrates all these topics within a system level 
example: the cycle model design of a jet engine. 

2 Discussion on Model-Based System 
Engineering 

2.1 Simulation Modes in a MBSE Design 
Cycle 

In an industrial Model-Based System Engineering 
(MBSE) development, the customer needs, system goal, 
and purpose would define the system requirements (R 
from the RFLP acronym). The system would be split 
into several subsystems – most likely through a function 
breakdown structure process (F from the RFLP 
acronym) – and requirements would be propagated and 
incremented, with traceability and rationale, to the 
subsystems. This step would be reproduced as many 
times as necessary to reach a level of subsystems that 
can be assigned to a given company department – 
typically organized by physical domains or main 
product functions. 

Based on a requirement specification and the 
functions and scenarios it shall fulfill – assuming 
correctness, completeness and consistency –a 
subsystem can be designed. In a model-based design 
approach, lumped parameter modeling and simulation 
(L for logical from the RFLP) can be used to define a 
viewpoint of the subsystem architecture, select 
component technologies (assisting trade-off studies) and 
size each of them. At this stage, it is relevant to highlight 
that some efforts exist in verifying that models satisfy 
the requirements using the Modelica language (see for 
example [OTT15] or [BOU18]). Finally, the detail 
design would be performed using 3D drawings, Finite 
Element Analysis, Computational Fluid Dynamics, etc. 
– this would be the P for physical from the RFLP. 

One of the main added values of using model-based 
development is the possibility to run virtual tests during 
the design cycle, prior to manufacturing any physical 
prototype. This enables iterating on the design in a cost- 
and time-effective manner. 

This statement enables deriving two different 
simulation modes, based on the different steps of the 
design process: 
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1. On-design: the boundary conditions (design point 
scenarios) are known and the aim of the simulation 
is to compute the parameters of the system (sizing). 

2. Off-design: the parameters are all known at this 
stage and the system and experiments can be run 
based on some boundary conditions. The outcomes 
will be the system behavior. 

It is quite intuitive based on the above description to 
see these two modes as sequential and probably 
iterative. A user would first run the on-design simulation 
on a design point and then run the simulation and 
validate his design. The iteration process would come 
from the fact that the design point might not be unique 
– e.g., it might be different for each component or 
subsystem of the system – and thus convergence of the 
system design can only be achieved by iterating on the 
on-design simulations. 

Figure 1 presents the double-V-model from 
VDI 2206 [VDI04] standard, displaying the RFLP steps, 
on which the on- (1) and off-design (2) simulations and 
potential design iterations (3) have been drawn onto in 
orange. 

       

    

 
Figure 1. Simulation modes on a design cycle, based on 
[EIG12] 

2.2 Requirements for models 
The notion of system and subsystem is a question of 
perspective. When changing viewpoint, one system 
might become a subsystem and vice-versa – e.g., when 
sizing an aircraft, the jet engine is a subsystem; 
however, when sizing the jet engine, the engine is the 
system while the turbine might be a subsystem. Models 
in a MBSE development are a “key tool” for the design. 
For a model developer, the model shall be considered as 
a system. A good practice is thus to have requirements 
for the model development, in the same way that we 
have requirements driving the physical system itself. 

The authors already contributed in: 
• adding requirements when it comes to model 

development [COI16], quoting: 
o R1 Realism. The model architecture shall enable 

incremental modelling to progressively increase 

realism regarding the key physical effects that 
impact performance. 

o R2 Genericity. As far as possible, the model shall 
be made of a combination of generic sub-models 
that can be re-used for other modelling purposes. 

o R3 Interfacing. The model shall have standard 
interfaces that are conserved throughout 
modelling levels in order to ensure models’ 
replaceability. 

o R4 Balancing. The model shall be balanced 
(mechanically, energetically, etc.). 

o R5 Ageing and faults. The model shall enable 
ageing effects or faults to be simulated. 

o R6 Causality. The model shall be developed to 
admit various causalities, including for inverse 
simulation. 

• developing model architecture that fits the main 
functions to fulfill [COI18]. 

 
It is relevant here to note that the Modelica language 

enables developing models that fulfill all these 
requirements. The Modelon Jet Propulsion library is a 
great example of that. In [SIE17], Sielemann et al. 
introduced this library dedicated to modeling and 
simulation of jet engines. This paper shows how the 
model architecting enables selecting different levels of 
realism of the subsystems (R1), based on the use of 
generic models (R2) and interfaces (R3) – see Figure 2. 
Balancing (R4) is ensured in the library in Modelon 
implementation of physical laws and following 
Modelica specification for model numerical balancing 
[OLS08]). The a-causality of Modelica enables 
satisfying the last requirement (R6). While ageing and 
faults (R5) are perfectly feasible with Modelica 
language, this topic is out of the scope of this library and 
communication, for now. 

 
Figure 2. Top-level turbofan model breakdown shown on 
the top, compressor break-down on the lower left, high 
pressure compression section break-down on the lower 
right – from [SIE17] 
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2.3 Additional requirements for the 
simulation modes in Steady-State 

Unfortunately, there is still a lack of standards when it 
comes to requirements for model development. In this 
paper, the authors would like to contribute on this topic 
by adding model requirements to fit the workflows of 
model-based design and more specifically for the 
simulation modes discussed in §1. 

Typically, the technical requirements needed to 
follow the design workflow are: 
• In terms of processing: 
o R7. The user shall be able to switch between on- 

and off-design without changing model structure 
or realism. 

o R8. The user shall be able to re-use the outputs 
from the on-design simulation as input to the off-
design simulations. 

o R9. The user shall access the model execution 
through convenient user interface and scripting 
tools. 

• In terms of user friendliness: 
o R10. Switching between simulation modes 

should not create execution overhead. 
o R11. Switching between simulation modes 

should be performed by changing a single 
parameter. 

o R12. The model shall have a robust steady-state 
embedded capability. 

2.4 Implementation of Steady-State 
simulation modes into Modelon Jet 
Propulsion Library 

To meet these requirements, Modelon developed a 
vendor-specific language construct, supported by the 
Modelon Optimica Compiler Toolkit (OCT), to support 
Physics-based Solving of systems. The Physics-based 
Solving implemented in our libraries relies on Modelon 
insights about the physical properties of components 

and systems to achieve a structure of the system of 
equations that yields vastly superior numerical 
properties as compared to traditional tearing algorithms. 

Tearing is a symbolic substitution technique well-
established in general system simulation. For an 
introduction in the context of Modelica, see [ELM94]. 
In most Modelica tools, the selection is fully automatic 
and based on heuristics. These heuristics are based on 
the structure of the equation system and code 
implementation, but not on physical insight. This 
typically works well for nonlinear algebraic equation 
systems with a small to medium size of iteration 
variables per block. However, when using automatic 
tearing, iteration variables can change unexpectedly for 
the user with small model changes (e.g., adding more 
components to the system, changing the type of a model, 
or with a structural parameter change). Then, hand-
tuned start values are lost. Additionally, automatic 
tearing may choose iteration variables for which the user 
has less intuition concerning suitable start values or 
bounds based on engineering insight. 

With the Physics-based Solving, the above 
challenges were solved, and the authors were able to 
implement this engineering in the library. Instructions 
embedded in component models guide the compiler and 
solver on which variables and equations should be 
selected respectively as iteration variables and residuals 
for the steady-state simulation. The Physics-based 
Solving enables a robust steady-state simulation (R12). 
This language construct enables changing the iteration 
variables and residuals based on Boolean parameters, 
without the need for recompilation. The information is 
stored in an object-oriented fashion, such that modelers 
can assemble systems graphically, and the desired 
solving can be deduced from the model topology (model 
instances and connections). In the discussed application, 
changing the simulation mode parameter from on- to 
off-design would change the set of iteration variables 
and residuals the solver would use. This feature was 
used to meet requirements R7, R10 and R11. 

 
Figure 3. Typical workflow using OCT with Python interface 
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Generally accepted choices for iteration variables and 
residual equations are documented in many textbooks 
and scientific papers from the gas turbine community 
(see Walsh and Fletcher [WAL04], Oates [OAT97], for 
instance). They are commonly referred to as 
“thermodynamic matching” by this community. All that 
was required for this work was encoding the information 
in the Modelica language through the above-mentioned 
language construct, and then testing and validating 
physical and numerical behavior. 

The Modelica compiler OCT generates Functional 
Mock-up Units (FMUs) – following the FMI standard. 
Using pyFMI or the FMI Toolbox from Modelon, it is 
easy to interact with the FMU, and thus requirements R8 
and R9 are both met using Python or Matlab scripting 
into Jupyter notebooks. Figure 3 shows the typical 
workflow using OCT with Python interface for steady-
state simulation. 

3 Steady-state simulation using OCT 
– a robust solution 

3.1 Modelica Compiler capabilities 
The Modelica language, being equation-based, enables 
the compiler to have more degrees of flexibility. All 
Modelica compilers are able to rearrange the acausal 
equations into causal algorithms, suitable for 
simulation. Modelica compilers are also usually able to 
automatically derive the sensitivities relevant for 
solving optimization problems. 

While these features are generic to most Modelica 
compilers, Modelon compiler (OCT) has the additional 
capability to hide residual equations and iteration 
variables from the solver in a compiled model. This 
feature is key to enable switching between simulation 
modes without recompiling the model. 

3.2 Solver Improvements 
Modelica models and FMUs usually use variables 
expressed in SI units. Variable values may therefore 
differ by several orders in magnitude [SIE12]. This can 
yield to ill-conditioned systems which are difficult to 
converge. In order to handle ill-conditioned systems, the 
solver supports scaling of both the residual equations 
and of the iteration variables, which is used in the 
criteria for a successful solution. Note that while for the 
Newton method the step is scaling-independent (i.e., 
direction and length do not change with scaling), for the 
steepest descent search direction as well as solver 
termination criteria, results are dependent on the scaling 
factors applied. 

Iteration variables are normally scaled based on the 
nominal values provided by the modeler. This is done 
using the nominal attribute 𝑥𝑥𝑛𝑛𝑛𝑛𝑚𝑚𝑗𝑗, according to 𝐷𝐷𝑥𝑥𝑗𝑗 =
1/|𝑥𝑥𝑛𝑛𝑛𝑛𝑚𝑚𝑗𝑗|. If the nominal attribute for a particular 

iteration variable is not set, then the corresponding 
scaling factor 𝐷𝐷𝑥𝑥𝑗𝑗 is set to one. 

Residual scaling factors utilized by the solver are 
evaluated based on the Jacobian and follow ideas similar 
to Jacobian equilibration. The automatic scaling is 
chosen as 𝐷𝐷𝑥𝑥𝑗𝑗 = 1/ ||𝐽𝐽�̅�𝑘(𝑥𝑥0)||∞, where 𝐽𝐽 ̅ is a scaled 

Jacobian calculated as 𝐽𝐽(̅𝑥𝑥) = ∇𝑥𝑥𝐹𝐹(𝑥𝑥)𝐷𝐷𝑥𝑥−1 and where 
𝑥𝑥0 is the initial guess. 

OCT steady-state solver relies on a combination of 
residual and step norm as exit criterion. Newton step 
norm-based criterion is typically used as the primary 
convergence indicator. If iterations fail to converge for 
that criterion an additional check on residual criterion is 
done and the solution is accepted if residuals are 
sufficiently small. 

3.3 Debugging capability 
The OCT solver generates log messages in XML format, 
enabling automated post-processing and debugging of 
non-convergence. OCT provides a dedicated Python 
package that facilitates parsing of the log and extraction 
of the most relevant information. 

To further facilitate interactive non-convergence 
debugging, the framework includes a Python package 
that enables user interaction with the equation system 
from the Python console. The interactive features 
include temporary elimination of some of the iteration 
variables and residuals from the equation system, local 
residual and Jacobian analysis, etc. The interactive 
framework facilitates equation debugging and enables 
localization of the problematic residual equation (e.g., 
with local extrema or discontinuity). 

4 Component level examples 
4.1 Combustor 
The combustor or burner is a key component for gas 
turbine simulation. It models the injection of a fuel 
stream into a gas stream, and its partial or complete 
combustion. It is usually modeled as a two-port or three-
port component, based on whether the fuel supply shall 
be modeled in a physical way (e.g., solving mass flow 
rates from pressure differences and correlations of wall 
friction) or simplified. In case of the latter, no physical 
fluid connector is used for the fuel supply. Instead, 
parameters or signal inputs are used to specify fuel 
supply information. In the case of the former, a physical 
fuel connector with complete information on convective 
transport quantities such as pressure, mass flow, 
composition, and specific enthalpy is included, and 
physical pipe or boundary condition models are 
connected to the burner. Independently of the modeling 
abstraction of the fuel supply, the gas inlet and outlet of 
the combustor are always normally modeled with 
physical connectors in the Jet Propulsion Library. 
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Engineering activities call for some flexibility in the 
modeling of such combustors. One aspect relates to the 
prescription of fuel flow. The most basic ways of 
prescribing the latter are to prescribe either the 
dimensional fuel flow (in units kg/s or a non-SI 
counterpart) directly, or the non-dimensional fuel-to-air 
ratio (“FAR”). Following the “thermodynamic 
matching” principle, upon evaluation of the combustor 
model equations, a guessed or correct air flow rate 
entering the combustor will be known. Thus, it is 
straightforward to compute the dimensional mass flow 
rate of fuel from FAR in case of the latter, and both are 
equivalent from a computational order principle. 
“Thermodynamic matching,” then, prefers the usage of 
non-dimensional FAR over dimensional fuel flow rate 
because of its higher robustness against variations in gas 
turbine requirements/size. (As the gas turbine becomes 
larger, the air flow rate increases. To compensate, an 
increase in fuel flow is required to maintain otherwise 
unchanged conditions, which is already accounted for 
when using FAR as iteration variable and not accounted 
for when using dimensional fuel flow as iteration 
variable.). 

However, the user typically wants to prescribe fuel 
flow or FAR indirectly via combustor outlet temperature 
(so-called “T4”), net thrust, etc. With this 
implementation, it is possible to switch between these 
prescriptions while iterating on commonly preferred 
FAR by switching out residual equations (that enforce 
equality of T4, net thrust, etc.). 

To enable switching between different equation 
systems for on-and off-design, similar functionality was 
implemented in the compressor. 

4.2 Compressor 
The compressor usually receives mechanical power 
from a shaft and converts it into thermofluidic power by 
compressing the entering gas – as its name indicates. 
Following the air flow path, it is typically located before 
the burner and the turbine and is aimed at bringing the 
gas to a higher pressure. It is modeled in the Jet 
Propulsion Library as a two-port component – it can also 
include vectorized bleed ports if desired – and uses maps 
to define the compressor performance. While the 
compressor is modeled in a physical way, its map is 
purely an algebraic abstraction of the performance that 
enables solving the compressor models in a more robust 
way. 
For the compressor, the library includes a model of the 
R-line map. R-lines are sets of curves that can be parallel 
to the surge line and evenly spaced among each other. 
The use of such an artificial interpolation to coordinate 
R-lines (sometimes also called argument lines or beta 
lines) ensures unique results in the regions of low 
corrected air flow, where pressure ratio is almost a 
constant and regions of constant air flow towards the 

highest air flow region for a given speed line (avoiding 
table look-up along vertical or horizonal tangents). 

The performance map is a good example of how on- 
and off-design sets of equations are different and how 
the Physics-based Solving is well suited to this 
workflow: 

- For on-design simulation, the scaling factors of 
the map are computed based on the design point 
performances.  

- For off-design simulation: 
o These scaling factors shall now be fixed 

parameters and therefore are held constant 
during the simulation, and the equations that 
defined them are hidden to the solver. 

o The off-design operating points and surge 
margin are an output of the map and are 
computed based on the off-design point 
definition. 

 
For both simulation modes, the R-line is an iteration 
variable that is associated to a residual equation that 
enforces the corrected air flow from the map to be equal 
to the physical airflow computed in the compressor. 

5 Optimization of a jet engine – a 
system example 

5.1 System under study 
In this part, the optimization of a jet engine (also 
described as cycle model in the literature – due to the 
importance of thermodynamics effects) is discussed. 
The architecture selected and objectives for the 
parameter values are based on [SIE19] in which the 
technology investigated corresponds to an Entry-into-
Service in year 2035 for geared turbofan engine. 

A geared turbofan is shown in Figure 4. It usually 
includes one inlet fan that can be divided into a center 
part that supplies the flow for the core region (fanCore) 
and a coaxial outer section that supplies air for the 
bypass (fanByp). The center part of the engine includes 
two compressor stages (ipc and hpc), the combustion 
chamber or burner (brn), and the turbine consisting of a 
high-pressure section (hpt) and a low-pressure section 
(lpt). There are two nozzles at the outlet, one for the 
bypass (nozByp) and one for the center part (nozCore). 
A gearbox (gear) between the turbine and the fan allow 
different rotational speed (e.g., for optimized efficiency 
of each section). It enables a design in which the speed 
of the inlet fan with its large blades is reduced and the 
compressor and turbine can be operated at higher 
speeds. 
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Figure 4. Cross-section view of a geared turbofan design 

 
Figure 5 presents the associated model of this geared 

turbofan developed using Modelon Jet Propulsion 
library. 

On the left of the schematic, the air flow enters the 
gas turbine via an inlet. Eventually, it is split into the 
core flow (through combustor and turbines) and bypass 
flow. The bypass flow terminates, after the bypass side 
of the fan and a duct model, with the bypass nozzle. The 
core flow passes through the usual set of compressors, 
the burner, and the usual set of turbines. The 
connections on the top of the compressor and turbine 
components represent the bleed air flow. Air is extracted 
from the high-pressure compressor both for customer 
uses (routed to boundary custBld) and to cool the high-
pressure and low-pressure turbines. At the bottom of the 

compressors and turbines, the mechanical shaft 
connections are made. The high-pressure spool and the 
low-pressure spool with fan gear are shown. Eventually, 
the core flow is disposed of via the core nozzle. Analysis 
overview 
In order to achieve a proper design of the cycle, a set of 
simulations on several operating points has been 
performed. The scheme involves the following steps: 
• Converging a simulation for the design point 
• Extracting the gas turbine sizing and initialization 

data for use in off-design points (see [BEC15] for 
more details on this) 

• Creating a simulator instance for all off-design 
points (e.g., cruise and take-off) 

 
We exemplify the need for iteration described in 

Figure 1 via the definition of cooling flows to be 
extracted from the high pressure compressor to the high 
pressure turbine and low pressure turbine (see above 
cycle description). Typically, they must be set to some 
approximate value on the design point, and then the 
resulting turbine blade metal temperatures must be 
computed in all off-design cases (so-called “uniform 
blade temperatures” in gas turbine parlance). In order to 
enforce a maximum temperature across all cases, the gas 
turbine designer must iterate on the cooling flow 
fractions on the design case until all temperature 
constraints are met.  

 

 
Figure 5. Architecture of the geared turbofan to optimize
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5.2 Cycle missions and simulation modes 
In [ZHA19], a slight variant of the above-shown geared 
turbofan model was investigated for a A320-200 type 
aircraft. The model setup was replicated for this effort. 
[SIE19] provides data on the accuracy of the resulting 
data match. The general missions presented in this 
communication are listed in Table 1, below. 

 Top of 
climb Cruise Take-off 

Thrust 24 kN 18 kN 92.5 kN 

Day type ISA ISA 
Hot day 
(ISA+15 

K) 

Altitude 35000 ft 35000 ft 0 ft 

Mach 
Number 0.78 0.78 0.25 

Type On-Design Off-Design Off-Design 

Table 1. Cycle design missions 
The design point in the missions under study is the 

“Top of Climb” – i.e., it is aerodynamically the most 
constraining mission point for the sizing of the gas 
turbine, optimizing its specific fuel consumption (SFC), 
while keeping the uniform blade temperature (UBT) 
below 1240°C. Note that the SFC corresponds to the 
ratio between the fuel consumption and the thrust of the 
jet engine. Nevertheless, the other missions are relevant 
to include as they represent the points with highest thrust 
requirement (take-off) and longest duration (cruise, thus 
driving overall mission block fuel consumption). 

5.3 Cycle design, results and discussions 
For the geared turbofan under study and modeled with 
Modelon Jet Propulsion library, the overall pressure 
ratio (OPR) technology variable was set to 55, which is 
a relevant order of magnitude for a 2035 technology. 
Overall pressure ratio is the product of all fan and 
compressor pressure ratios, and a key technology 
variable as it increases the thermal efficiency of the 
cycle. A manual convergence was achieved by varying 
the above-mentioned cooling flows on the design point, 
and all temperature criteria were eventually met for the 
different mission profiles. 

In a second step, in a small design space exploration 
exercise, the OPR was varied down to 50 and up to 60 
(however, the manual convergence of cooling flows and 
temperatures is not included in the analysis). Figure 6 
shows a key cycle design result: the specific fuel 
consumption (SFC) versus the OPR. 

 
Figure 6. Design exploration, SFC v/s OPR 

Figure 6 shows how the specific fuel consumption 
improves with increasing OPR. The most relevant line 
is the orange one, which is weighed highly in the total 
mission block fuel. From this plot alone, we would be 
tempted to directly move to even higher OPR values to 
leverage the fuel consumption improvement. However, 
upon reviewing results on other key variables (the 
above-described temperatures), we see that further 
manual convergence work is required to yield the 
complete picture. 

In Figure 7 we see the corresponding results. Based 
on material and cooling technology constraints, the 
uniform blade temperature (UBT) shall remain below 
1240 K. The manual convergence was applied at OPR 
55 and yields exactly these or lower values for all 
operating conditions and turbines. Figure 7 shows how 
the UBT varies within the design exploration. 

 
Figure 7. Design exploration, UBT v/s OPR 

Keeping the cooling flow fractions constant results in 
violation of temperature constraints on turbine blade 
metal temperatures. This convergence would have to be 
achieved not only for an OPR of 55 but for all the OPR 
values to avoid dropping with UBT below acceptable 
temperatures at lower OPR (leaving unused efficiency 
potential on the table) and going beyond acceptable 
UBT at higher OPR (and thus resulting in an infeasible 
design). This plot thus illustrates the need for iterations 
on the flow fractions when sizing a cycle model. 
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To illustrate the challenge further, the variation in 
velocity ratio and specific thrust are plotted respectively 
in Figure 8 and Figure 9. To yield a balanced and 
efficient design, the gas turbine designer intends to 
maintain these at specific values, which lead to high 
efficiency [KYP17]. These values would have to be 
included in the manual convergence, too, and illustrates 
the complexity of the required analysis work. 

 
Figure 8. Design exploration, VR v/s OPR 

 
Figure 9. Design exploration, ST v/s OPR 

Figures 5 to 8 illustrate how robustly the steady-state 
cycle analysis problems can be solved with the new 
Physics-based Solving functionality. This analysis is 
enabled by the functionality introduced above, such as 
for the extraction of solutions from one simulation for 
the initialization of another. At the same time, the 
figures also illustrate how a full optimization of the 
cycle design for given objectives requires observing and 
satisfying constraints, which, based on problem 
complexity, can be tedious. This observation indicates a 
potential next step in our work – to implement automatic 
multi-point design techniques to solve the above-
described consistency via the already-used equation 
solver across the design point and all the off-design 
points. This is an ongoing development that is beyond 
the scope of this paper, and it will be described in a 
future publication. 

6 Conclusion and perspectives 
This paper discussed how the Modelon products 

enable suiting the design workflow of a typical cycle 
model. This simulation was made possible by properly 
addressing the technical requirements for following 
such a workflow and developing a dedicated Physics-
based Solving design in the library to meet these 
requirements. Additionally, Modelon Optimica 
Compiler Toolkit as well as pyFMI and FMIT products 
are enablers for this workflow. Illustrations of this 
statement were performed in component and system 
level examples. 

While this paper addresses the complexity of gas 
turbine design and illustrates the benefit of Modelon 
dedicated products, it also touches the multi-point 
design problem without covering it in the examples.  
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