Enhanced Steady-State in Modelon Jet Propulsion Library,
an Enabler for Industrial Design Workflows

Clément Coic!

Moritz Hiibel

Matthis Thorade'

"Modelon Deutschland GmbH, Germany,
{clement.coic,moritz.hubel,matthis.thorade}@modelon.com

Abstract

This paper communicates on the implementation of
Physics-based Solving in the Modelon Jet Propulsion
library, driven by requirements from industrial jet
engine design workflows. On- and off-design simulation
modes are typically sequential and iterative steps in a
model-based design process of jet engines. The solution
Modelon provides — based on the Jet Propulsion Library,
Optimica Compiler Toolkit, FMI Toolbox and pyFMI —
enables performing a robust design of a gas turbine for
a design point satisfying relevant constraints of typical
off-design scenarios. This paper illustrates this
workflow with component and system level examples.

Keywords: Jet Propulsion, Physics-based Solving,
Steady-State, On-Design, Off-Design, Optimization

1 Introduction

The sizing of a gas turbine is typically performed over a
set of different scenarios. The design point would be the
first step in identifying basic parameters as it would be
the most constraining scenario for most components.
Computing the component parameters from the
boundary conditions on this point will be qualified as
on-design simulation. For a jet engine, this would
typically be the cruise mode at the top of climb. Other
scenarios will be run to validate the design for
conditions that are relevant for the expected operation
such as takeoff or landing. In addition to the validations,
iterative tuning of variables (e.g., cooling flow fraction)
can be included — these would be named off-design
simulations.

Running these scenarios in a disconnected fashion
would be tedious and error prone. Model Based System
Engineering applied to the design of gas turbines
provides a relevant workflow that is addressed in this
paper and serves as source of requirements for
augmenting the Jet Propulsion library with additional
features. Section 2 of this paper discusses such
workflows, the resulting requirements and the
associated implementation within Modelon Jet
Propulsion Library. Section 3 provides some key
benefits of using Modelica language and Modelon
Optimica Compiler Toolkit to address this problem.
Section 4 presents two component examples and

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020 MARCH 23-25, BOULDER, CO, USA

discusses their specific on- and off-design behaviors.
Section 5 illustrates all these topics within a system level
example: the cycle model design of a jet engine.

2 Discussion on Model-Based System
Engineering

2.1 Simulation Modes in a MBSE Design
Cycle

In an industrial Model-Based System Engineering
(MBSE) development, the customer needs, system goal,
and purpose would define the system requirements (R
from the RFLP acronym). The system would be split
into several subsystems — most likely through a function
breakdown structure process (F from the RFLP
acronym) — and requirements would be propagated and
incremented, with traceability and rationale, to the
subsystems. This step would be reproduced as many
times as necessary to reach a level of subsystems that
can be assigned to a given company department —
typically organized by physical domains or main
product functions.

Based on a requirement specification and the
functions and scenarios it shall fulfill — assuming
correctness, completeness and consistency -—a
subsystem can be designed. In a model-based design
approach, lumped parameter modeling and simulation
(L for logical from the RFLP) can be used to define a
viewpoint of the subsystem architecture, select
component technologies (assisting trade-off studies) and
size each of them. At this stage, it is relevant to highlight
that some efforts exist in verifying that models satisfy
the requirements using the Modelica language (see for
example [OTT15] or [BOU18]). Finally, the detail
design would be performed using 3D drawings, Finite
Element Analysis, Computational Fluid Dynamics, etc.
— this would be the P for physical from the RFLP.

One of the main added values of using model-based
development is the possibility to run virtual tests during
the design cycle, prior to manufacturing any physical
prototype. This enables iterating on the design in a cost-
and time-effective manner.

This statement enables deriving two different
simulation modes, based on the different steps of the
design process:

10.3384/ECP20169196 DOI



DOI 10.3384/ECP20169196

1. On-design: the boundary conditions (design point
scenarios) are known and the aim of the simulation
is to compute the parameters of the system (sizing).

2. Off-design: the parameters are all known at this
stage and the system and experiments can be run
based on some boundary conditions. The outcomes
will be the system behavior.

It is quite intuitive based on the above description to
see these two modes as sequential and probably
iterative. A user would first run the on-design simulation
on a design point and then run the simulation and
validate his design. The iteration process would come
from the fact that the design point might not be unique
— e.g., it might be different for each component or
subsystem of the system — and thus convergence of the
system design can only be achieved by iterating on the
on-design simulations.

Figure 1 presents the double-V-model from
VDI 2206 [VDI04] standard, displaying the RFLP steps,
on which the on- (1) and off-design (2) simulations and
potential design iterations (3) have been drawn onto in
orange.

Assurance of properties

R®

> w
Modelling and
specification

Modelling and
first simulation

i

Discipline-specific
modellin,

and simulation
v
\< P

Figure 1. Simulation modes on a design cycle, based on
[EIG12]

2.2 Requirements for models

The notion of system and subsystem is a question of
perspective. When changing viewpoint, one system
might become a subsystem and vice-versa — e.g., when
sizing an aircraft, the jet engine is a subsystem;
however, when sizing the jet engine, the engine is the
system while the turbine might be a subsystem. Models
in a MBSE development are a “key tool” for the design.
For a model developer, the model shall be considered as
a system. A good practice is thus to have requirements
for the model development, in the same way that we
have requirements driving the physical system itself.
The authors already contributed in:

e adding requirements when it comes to model
development [COI16], quoting:

o R1 Realism. The model architecture shall enable

incremental modelling to progressively increase

realism regarding the key physical effects that
impact performance.

o R2 Genericity. As far as possible, the model shall
be made of a combination of generic sub-models
that can be re-used for other modelling purposes.

o R3 Interfacing. The model shall have standard
interfaces that are conserved throughout
modelling levels in order to ensure models’
replaceability.

o R4 Balancing. The model shall be balanced
(mechanically, energetically, etc.).

o R5 Ageing and faults. The model shall enable
ageing effects or faults to be simulated.

o R6 Causality. The model shall be developed to
admit various causalities, including for inverse
simulation.

e developing model architecture that fits the main
functions to fulfill [COI18].

It is relevant here to note that the Modelica language
enables developing models that fulfill all these
requirements. The Modelon Jet Propulsion library is a
great example of that. In [SIE17], Sielemann et al.
introduced this library dedicated to modeling and
simulation of jet engines. This paper shows how the
model architecting enables selecting different levels of
realism of the subsystems (R1), based on the use of
generic models (R2) and interfaces (R3) — see Figure 2.
Balancing (R4) is ensured in the library in Modelon
implementation of physical laws and following
Modelica specification for model numerical balancing
[OLS08]). The a-causality of Modelica enables
satisfying the last requirement (R6). While ageing and
faults (RS5) are perfectly feasible with Modelica
language, this topic is out of the scope of this library and
communication, for now.

turbine augmentor nozzlePri

il

Figure 2. Top-level turbofan model breakdown shown on
the top, compressor break-down on the lower left, high
pressure compression section break-down on the lower
right — from [SIE17]

MARCH 23-25, BOULDER, CO, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

197



2.3 Additional requirements for the
simulation modes in Steady-State

Unfortunately, there is still a lack of standards when it
comes to requirements for model development. In this
paper, the authors would like to contribute on this topic
by adding model requirements to fit the workflows of
model-based design and more specifically for the
simulation modes discussed in §1.

Typically, the technical requirements needed to
follow the design workflow are:

o In terms of processing:

o R7. The user shall be able to switch between on-
and off-design without changing model structure
or realism.

o R8. The user shall be able to re-use the outputs
from the on-design simulation as input to the off-
design simulations.

o R9. The user shall access the model execution
through convenient user interface and scripting
tools.

o In terms of user friendliness:

o RI10. Switching between simulation modes
should not create execution overhead.

o RI1. Switching between simulation modes
should be performed by changing a single
parameter.

o RI12. The model shall have a robust steady-state
embedded capability.

2.4 Implementation of Steady-State
simulation modes into Modelon Jet
Propulsion Library

To meet these requirements, Modelon developed a
vendor-specific language construct, supported by the
Modelon Optimica Compiler Toolkit (OCT), to support
Physics-based Solving of systems. The Physics-based
Solving implemented in our libraries relies on Modelon
insights about the physical properties of components

and systems to achieve a structure of the system of
equations that yields wvastly superior numerical
properties as compared to traditional tearing algorithms.

Tearing is a symbolic substitution technique well-
established in general system simulation. For an
introduction in the context of Modelica, see [ELM94].
In most Modelica tools, the selection is fully automatic
and based on heuristics. These heuristics are based on
the structure of the equation system and code
implementation, but not on physical insight. This
typically works well for nonlinear algebraic equation
systems with a small to medium size of iteration
variables per block. However, when using automatic
tearing, iteration variables can change unexpectedly for
the user with small model changes (e.g., adding more
components to the system, changing the type of a model,
or with a structural parameter change). Then, hand-
tuned start values are lost. Additionally, automatic
tearing may choose iteration variables for which the user
has less intuition concerning suitable start values or
bounds based on engineering insight.

With the Physics-based Solving, the above
challenges were solved, and the authors were able to
implement this engineering in the library. Instructions
embedded in component models guide the compiler and
solver on which variables and equations should be
selected respectively as iteration variables and residuals
for the steady-state simulation. The Physics-based
Solving enables a robust steady-state simulation (R12).
This language construct enables changing the iteration
variables and residuals based on Boolean parameters,
without the need for recompilation. The information is
stored in an object-oriented fashion, such that modelers
can assemble systems graphically, and the desired
solving can be deduced from the model topology (model
instances and connections). In the discussed application,
changing the simulation mode parameter from on- to
off-design would change the set of iteration variables
and residuals the solver would use. This feature was
used to meet requirements R7, R10 and R11.

iwi Optimica Compiler Toolkit (OCT)

ctiv
Lt oy,
N N

Pr \ 5
Q\‘I\U Ob/e’b oagnos, o

%@, o
Y State OV

Scripting 1
Python platform

Figure 3. Typical workflow using OCT with Python interface

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020 MARCH 23-25, BOULDER, CO, USA

10.3384/ECP20169196 DOI



DOI 10.3384/ECP20169196

Generally accepted choices for iteration variables and
residual equations are documented in many textbooks
and scientific papers from the gas turbine community
(see Walsh and Fletcher [WALO04], Oates [OAT97], for
instance). They are commonly referred to as
“thermodynamic matching” by this community. All that
was required for this work was encoding the information
in the Modelica language through the above-mentioned
language construct, and then testing and validating
physical and numerical behavior.

The Modelica compiler OCT generates Functional
Mock-up Units (FMUs) — following the FMI standard.
Using pyFMI or the FMI Toolbox from Modelon, it is
easy to interact with the FMU, and thus requirements RS
and R9 are both met using Python or Matlab scripting
into Jupyter notebooks. Figure 3 shows the typical
workflow using OCT with Python interface for steady-
state simulation.

3 Steady-state simulation using OCT
— a robust solution

3.1 Modelica Compiler capabilities

The Modelica language, being equation-based, enables
the compiler to have more degrees of flexibility. All
Modelica compilers are able to rearrange the acausal
equations into causal algorithms, suitable for
simulation. Modelica compilers are also usually able to
automatically derive the sensitivities relevant for
solving optimization problems.

While these features are generic to most Modelica
compilers, Modelon compiler (OCT) has the additional
capability to hide residual equations and iteration
variables from the solver in a compiled model. This
feature is key to enable switching between simulation
modes without recompiling the model.

3.2 Solver Improvements

Modelica models and FMUs usually use variables
expressed in SI units. Variable values may therefore
differ by several orders in magnitude [SIE12]. This can
yield to ill-conditioned systems which are difficult to
converge. In order to handle ill-conditioned systems, the
solver supports scaling of both the residual equations
and of the iteration variables, which is used in the
criteria for a successful solution. Note that while for the
Newton method the step is scaling-independent (i.e.,
direction and length do not change with scaling), for the
steepest descent search direction as well as solver
termination criteria, results are dependent on the scaling
factors applied.

Iteration variables are normally scaled based on the
nominal values provided by the modeler. This is done

using the nominal attribute Xnom;s according to D,{ =
1/ |xn0m].|. If the nominal attribute for a particular

iteration variable is not set, then the corresponding

scaling factor D is set to one.

Residual scaling factors utilized by the solver are
evaluated based on the Jacobian and follow ideas similar
to Jacobian equilibration. The automatic scaling is

chosen as D] = 1/||]_k(x0)|| , where ] is a scaled

Jacobian calculated as J(x) = V,.F(x)D;! and where
X is the initial guess.

OCT steady-state solver relies on a combination of
residual and step norm as exit criterion. Newton step
norm-based criterion is typically used as the primary
convergence indicator. If iterations fail to converge for
that criterion an additional check on residual criterion is
done and the solution is accepted if residuals are
sufficiently small.

3.3 Debugging capability

The OCT solver generates log messages in XML format,
enabling automated post-processing and debugging of
non-convergence. OCT provides a dedicated Python
package that facilitates parsing of the log and extraction
of the most relevant information.

To further facilitate interactive non-convergence
debugging, the framework includes a Python package
that enables user interaction with the equation system
from the Python console. The interactive features
include temporary elimination of some of the iteration
variables and residuals from the equation system, local
residual and Jacobian analysis, etc. The interactive
framework facilitates equation debugging and enables
localization of the problematic residual equation (e.g.,
with local extrema or discontinuity).

4 Component level examples

4.1 Combustor

The combustor or burner is a key component for gas
turbine simulation. It models the injection of a fuel
stream into a gas stream, and its partial or complete
combustion. It is usually modeled as a two-port or three-
port component, based on whether the fuel supply shall
be modeled in a physical way (e.g., solving mass flow
rates from pressure differences and correlations of wall
friction) or simplified. In case of the latter, no physical
fluid connector is used for the fuel supply. Instead,
parameters or signal inputs are used to specify fuel
supply information. In the case of the former, a physical
fuel connector with complete information on convective
transport quantities such as pressure, mass flow,
composition, and specific enthalpy is included, and
physical pipe or boundary condition models are
connected to the burner. Independently of the modeling
abstraction of the fuel supply, the gas inlet and outlet of
the combustor are always normally modeled with
physical connectors in the Jet Propulsion Library.

MARCH 23-25, BOULDER, CO, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

199



Engineering activities call for some flexibility in the
modeling of such combustors. One aspect relates to the
prescription of fuel flow. The most basic ways of
prescribing the latter are to prescribe either the
dimensional fuel flow (in units kg/s or a non-SI
counterpart) directly, or the non-dimensional fuel-to-air
ratio (“FAR”). Following the “thermodynamic
matching” principle, upon evaluation of the combustor
model equations, a guessed or correct air flow rate
entering the combustor will be known. Thus, it is
straightforward to compute the dimensional mass flow
rate of fuel from FAR in case of the latter, and both are
equivalent from a computational order principle.
“Thermodynamic matching,” then, prefers the usage of
non-dimensional FAR over dimensional fuel flow rate
because of its higher robustness against variations in gas
turbine requirements/size. (As the gas turbine becomes
larger, the air flow rate increases. To compensate, an
increase in fuel flow is required to maintain otherwise
unchanged conditions, which is already accounted for
when using FAR as iteration variable and not accounted
for when using dimensional fuel flow as iteration
variable.).

However, the user typically wants to prescribe fuel
flow or FAR indirectly via combustor outlet temperature
(so-called “T4”), net thrust, etc. With this
implementation, it is possible to switch between these
prescriptions while iterating on commonly preferred
FAR by switching out residual equations (that enforce
equality of T4, net thrust, etc.).

To enable switching between different equation
systems for on-and off-design, similar functionality was
implemented in the compressor.

4.2 Compressor

The compressor usually receives mechanical power
from a shaft and converts it into thermofluidic power by
compressing the entering gas — as its name indicates.
Following the air flow path, it is typically located before
the burner and the turbine and is aimed at bringing the
gas to a higher pressure. It is modeled in the Jet
Propulsion Library as a two-port component — it can also
include vectorized bleed ports if desired — and uses maps
to define the compressor performance. While the
compressor is modeled in a physical way, its map is
purely an algebraic abstraction of the performance that
enables solving the compressor models in a more robust
way.

For the compressor, the library includes a model of the
R-line map. R-lines are sets of curves that can be parallel
to the surge line and evenly spaced among each other.
The use of such an artificial interpolation to coordinate
R-lines (sometimes also called argument lines or beta
lines) ensures unique results in the regions of low
corrected air flow, where pressure ratio is almost a
constant and regions of constant air flow towards the

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020 MARCH 23-25, BOULDER, CO, USA

highest air flow region for a given speed line (avoiding
table look-up along vertical or horizonal tangents).

The performance map is a good example of how on-
and off-design sets of equations are different and how
the Physics-based Solving is well suited to this
workflow:

- For on-design simulation, the scaling factors of
the map are computed based on the design point
performances.

- For off-design simulation:

o These scaling factors shall now be fixed
parameters and therefore are held constant
during the simulation, and the equations that
defined them are hidden to the solver.

o The off-design operating points and surge
margin are an output of the map and are
computed based on the off-design point
definition.

For both simulation modes, the R-line is an iteration
variable that is associated to a residual equation that
enforces the corrected air flow from the map to be equal
to the physical airflow computed in the compressor.

5 Optimization of a jet engine — a
system example

5.1 System under study

In this part, the optimization of a jet engine (also
described as cycle model in the literature — due to the
importance of thermodynamics effects) is discussed.
The architecture selected and objectives for the
parameter values are based on [SIE19] in which the
technology investigated corresponds to an Entry-into-
Service in year 2035 for geared turbofan engine.

A geared turbofan is shown in Figure 4. It usually
includes one inlet fan that can be divided into a center
part that supplies the flow for the core region (fanCore)
and a coaxial outer section that supplies air for the
bypass (fanByp). The center part of the engine includes
two compressor stages (ipc and hpc), the combustion
chamber or burner (brn), and the turbine consisting of a
high-pressure section (hpt) and a low-pressure section
(Ipt). There are two nozzles at the outlet, one for the
bypass (nozByp) and one for the center part (nozCore).
A gearbox (gear) between the turbine and the fan allow
different rotational speed (e.g., for optimized efficiency
of each section). It enables a design in which the speed
of the inlet fan with its large blades is reduced and the
compressor and turbine can be operated at higher
speeds.

10.3384/ECP20169196 DOI



DOI 10.3384/ECP20169196

nozByp

] ||I MR ? nozCore

IIIE:EIIII ‘‘‘‘‘‘‘‘‘‘‘‘

fanCore

B

© u o
g 8 o E 2 &'
w2 £ 5 £ =

Figure 4. Cross-section view of a geared turbofan design

Figure 5 presents the associated model of this geared
turbofan developed using Modelon Jet Propulsion
library.

On the left of the schematic, the air flow enters the
gas turbine via an inlet. Eventually, it is split into the
core flow (through combustor and turbines) and bypass
flow. The bypass flow terminates, after the bypass side
of the fan and a duct model, with the bypass nozzle. The
core flow passes through the usual set of compressors,
the burner, and the usual set of turbines. The
connections on the top of the compressor and turbine
components represent the bleed air flow. Air is extracted
from the high-pressure compressor both for customer
uses (routed to boundary custBld) and to cool the high-
pressure and low-pressure turbines. At the bottom of the

compressors and turbines, the mechanical shaft
connections are made. The high-pressure spool and the
low-pressure spool with fan gear are shown. Eventually,
the core flow is disposed of via the core nozzle. Analysis
overview

In order to achieve a proper design of the cycle, a set of
simulations on several operating points has been
performed. The scheme involves the following steps:

e Converging a simulation for the design point

e Extracting the gas turbine sizing and initialization
data for use in off-design points (see [BEC15] for
more details on this)

e Creating a simulator instance for all off-design
points (e.g., cruise and take-off)

We exemplify the need for iteration described in
Figure 1 via the definition of cooling flows to be
extracted from the high pressure compressor to the high
pressure turbine and low pressure turbine (see above
cycle description). Typically, they must be set to some
approximate value on the design point, and then the
resulting turbine blade metal temperatures must be
computed in all off-design cases (so-called “uniform
blade temperatures” in gas turbine parlance). In order to
enforce a maximum temperature across all cases, the gas
turbine designer must iterate on the cooling flow
fractions on the design case until all temperature
constraints are met.

pigisna

@

. 9 T

boundary nlet spl —
fanCore brn nozCor
gea ’ j= 4

ratp=2

Figure 5. Architecture of the geared turbofan to optimize

-

powerLP ambient

p P_onD.

-2

torquelL PCalc

MARCH 23-25, BOULDER, CO, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

201



5.2 Cycle missions and simulation modes

In [ZHA19], a slight variant of the above-shown geared
turbofan model was investigated for a A320-200 type
aircraft. The model setup was replicated for this effort.
[SIE19] provides data on the accuracy of the resulting
data match. The general missions presented in this
communication are listed in Table 1, below.

24 kKN 18 kN 92.5 kN
Hot day
ISA ISA (ISA+15
K)
35000 ft 35000 ft 0 ft
0.78 0.78 0.25
On-Design  Off-Design  Off-Design

Table 1. Cycle design missions

The design point in the missions under study is the
“Top of Climb” — i.e., it is aerodynamically the most
constraining mission point for the sizing of the gas
turbine, optimizing its specific fuel consumption (SFC),
while keeping the uniform blade temperature (UBT)
below 1240°C. Note that the SFC corresponds to the
ratio between the fuel consumption and the thrust of the
jet engine. Nevertheless, the other missions are relevant
to include as they represent the points with highest thrust
requirement (take-off) and longest duration (cruise, thus
driving overall mission block fuel consumption).

5.3 Cycle design, results and discussions

For the geared turbofan under study and modeled with
Modelon Jet Propulsion library, the overall pressure
ratio (OPR) technology variable was set to 55, which is
a relevant order of magnitude for a 2035 technology.
Overall pressure ratio is the product of all fan and
compressor pressure ratios, and a key technology
variable as it increases the thermal efficiency of the
cycle. A manual convergence was achieved by varying
the above-mentioned cooling flows on the design point,
and all temperature criteria were eventually met for the
different mission profiles.

In a second step, in a small design space exploration
exercise, the OPR was varied down to 50 and up to 60
(however, the manual convergence of cooling flows and
temperatures is not included in the analysis). Figure 6
shows a key cycle design result: the specific fuel
consumption (SFC) versus the OPR.

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020 MARCH 23-25, BOULDER, CO, USA

Specific fuel consumption (SFC)

S—

i
w
o

<
s
™

o

IS

=)
L

—— Hot day TOC
ISA cruise
| — Hot day EOR takeoff

o o
N S
o N
"

i
w
@®

Specific fuel consumption (Ibm/Ibf.hr)
o
N
B

50 52 54 56 58 60
Qverall pressure ratio (-)

o

w

o
L

Figure 6. Design exploration, SFC v/s OPR

Figure 6 shows how the specific fuel consumption
improves with increasing OPR. The most relevant line
is the orange one, which is weighed highly in the total
mission block fuel. From this plot alone, we would be
tempted to directly move to even higher OPR values to
leverage the fuel consumption improvement. However,
upon reviewing results on other key variables (the
above-described temperatures), we see that further
manual convergence work is required to yield the
complete picture.

In Figure 7 we see the corresponding results. Based
on material and cooling technology constraints, the
uniform blade temperature (UBT) shall remain below
1240 K. The manual convergence was applied at OPR
55 and yields exactly these or lower values for all
operating conditions and turbines. Figure 7 shows how
the UBT varies within the design exploration.

Turbine uniform blade temperature Thu

12504

1200 A

11504

11004

HPT, TOC
HPT, cruise
1050 4 HPT, takeoff
LPT, TOC
LPT, cruise
LPT, takeoff

Uniform blade temperature (K)

1000 4

50 52 54 56 58 60
Overall pressure ratio (-)

Figure 7. Design exploration, UBT v/s OPR

Keeping the cooling flow fractions constant results in
violation of temperature constraints on turbine blade
metal temperatures. This convergence would have to be
achieved not only for an OPR of 55 but for all the OPR
values to avoid dropping with UBT below acceptable
temperatures at lower OPR (leaving unused efficiency
potential on the table) and going beyond acceptable
UBT at higher OPR (and thus resulting in an infeasible
design). This plot thus illustrates the need for iterations
on the flow fractions when sizing a cycle model.

10.3384/ECP20169196 DOI



DOI 10.3384/ECP20169196

To illustrate the challenge further, the variation in
velocity ratio and specific thrust are plotted respectively
in Figure 8 and Figure 9. To yield a balanced and
efficient design, the gas turbine designer intends to
maintain these at specific values, which lead to high
efficiency [KYP17]. These values would have to be
included in the manual convergence, too, and illustrates
the complexity of the required analysis work.

Velocity ratios

0841 vel ratio, TOC

0.82 Vel ratio, cruise
—— Vel ratio, hot day EOR
0.80

0.78 4
0.76 1

0.74 4

Velocity ratio (-)

0.724

0.704

0.68 1

50 52 54 56 58 60
Overall pressure ratio (-)

Figure 8. Design exploration, VR v/s OPR

Specific thrust

220
£ 200
v
Z
% 180 4 —— Spec thrust, TOC
e Spec thrust, cruise
% —— Spec thrust, hot day EOR
& 160 -
(¥}
[
Q.
(73]
140 1
1204

50 52 54 56 58 60
Overall pressure ratio (-)

Figure 9. Design exploration, ST v/s OPR

Figures 5 to 8 illustrate how robustly the steady-state
cycle analysis problems can be solved with the new
Physics-based Solving functionality. This analysis is
enabled by the functionality introduced above, such as
for the extraction of solutions from one simulation for
the initialization of another. At the same time, the
figures also illustrate how a full optimization of the
cycle design for given objectives requires observing and
satisfying constraints, which, based on problem
complexity, can be tedious. This observation indicates a
potential next step in our work — to implement automatic
multi-point design techniques to solve the above-
described consistency via the already-used equation
solver across the design point and all the off-design
points. This is an ongoing development that is beyond
the scope of this paper, and it will be described in a
future publication.

6 Conclusion and perspectives

This paper discussed how the Modelon products
enable suiting the design workflow of a typical cycle
model. This simulation was made possible by properly
addressing the technical requirements for following
such a workflow and developing a dedicated Physics-
based Solving design in the library to meet these
requirements.  Additionally, Modelon  Optimica
Compiler Toolkit as well as pyFMI and FMIT products
are enablers for this workflow. Illustrations of this
statement were performed in component and system
level examples.

While this paper addresses the complexity of gas
turbine design and illustrates the benefit of Modelon
dedicated products, it also touches the multi-point
design problem without covering it in the examples.

7 References

[BEC15] Becker, R.-G., Bolemant, M., Krause, D,
Peitsch, D., An automated process to create start values for
gas turbine performance simulations using neural networks
and evolutionary algorithms,
https://ieeexplore.ieee.org/xpl/conhome/8365669/proceeding
International Gas Turbine Congress, Tokyo, Japan, 2015.

[BOU18] Bouskela, D. & Jardin, A., ETL: A New
Temporal Language for the Verification of Cyber-Physical
Systems, 2018 Annual IEEE International Systems
Conference (SysCon), Vancouver, Canada, 2016.

[COI16] Coic, C., Fu, J. & Maré, J.-C., Bond
Graphs  Aided development of Mechanical Power
Transmission for Aerospace Electromechanical Actuators,
International Conference on Bond Graph Modelling,
Montréal, Canada, 2016.

[COI18] Coic, C. & Biéron, M., An Evolutive Bond
Graph Modeling of Aerospace Hydraulic Reservoirs and its
Modelica Implementation, International Conference on Bond
Graph Modelling, Bordeaux, France, 2018.

[ELM94] Elmgvist, H., Otter., M., Methods For
Tearing Systems Of Equations In Object-Oriented Modeling.
European Simulation Multiconference, Barcelona, Spain,
1994.

[EIG12] Eigner, M., Gilz, T. & Zafirov, R.,
Proposal for functional product description as part of a PLM
solution in  interdisciplinary  product  development.
International Design Conference, Dubrovnik, Croatia, 2012.

[KYP17] Kyprianidis, G. K., Dahlqvist, E., On the
trade-off between aviation NOx and energy efficiency. Applied
Energy, volume 185, pages 1506-1516, Elsevier, 2017.

[OATI7] Oates, G. C., Aerothermodynamics of Gas
Turbine and Rocket Propulsion. AIAA Education Series,
1997.

[OLS08] Olsson, H., Otter, M., Mattsson, S. E. &
Elmgqvist, H., Balanced models in Modelica 3.0 for increased
model quality. Proceedings of the 6th International Modelica
Conference, Bielefeld, Germany, 2008.

[OTT15] Otter, M., Nguyen, T., Bouskela, D.,
Buffoni, L., EImqvist, H., Fritzson, P., Garro, A., Jardin, A.,
Olsson, H., Payelleville, M., Schamai, W., Thomas, E. &
Tundis, A., Formal Requirements Modeling for Simulation-

MARCH 23-25, BOULDER, CO, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020

203



Based Verification, Proceedings of the 11" International
Modelica Conference, Versailles, France, 2015.

[SIE12] Sielemann, M., Device-Oriented Modeling
and Simulation in Aircraft Energy Systems Design. PhD
Dissertation, Munich, Germany, 2012.

[SIE17] Sielemann, M., Pitchaikani, A., Selvan, N.
& Sammak, N., The Jet Propulsion Library: Modeling and
simulation of aircraft engines. Proceedings of the 12th
International Modelica Conference, Praha, Czech Republic,
2017.

[SIE19] Sielemann, M., Thorade, M., Nguyen, A.,
Zhao, X., Sahoo, S. & Kypriandis, K., Modelica and
Functional Mock-Up Interface: Open Standards for Gas
Turbine Simulation. ASME TurboExpo, Phoenix, USA, 2019.

[WALO04] Walsh, P. P. & Fletcher, P., Gas Turbine
Performance. John Wiley & Sons, 2004.

[VDI104] VDI GUIDELINE 2206,
Entwicklungsmethodik fiir mechatronische Systeme — Design

methodology for mechatronic systems, Beuth, 2004. (in
German).

[ZHA19] Zhao, X., Sahoo, S., Kyprianidis, K.,
Sumsurooah, S., Valente, G., Rashed, M., Vakil, G., Hill, C.
I., Jacob, C., Gobbin, A., Bardenhagen, A., Prossl, K.,
Sielemann, M. Rantzer, J. & Ekstedt, E., 4 Framework for
Optimization of Hybrid Aircraft. ASME TurboExpo, Phoenix,
USA, 2019.

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020 MARCH 23-25, BOULDER, CO, USA

10.3384/ECP20169196 DOI





