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Abstract
We propose an implicit, event-driven, penalty-based
method for modeling rigid body contact and collision that
is useful for design and analysis of control algorithms for
precision robotic assembly tasks. The method is based
on Baumgarte’s method of differential algebraic equation
index reduction in which we modify the conventional con-
straint stabilization to model object collision, define a fi-
nite state machine to model transition between contact and
non-contact states, and represent the robot and task object
dynamics as a single set of differential algebraic inequal-
ities. The method, which is realized natively in Model-
ica, has some advantages over conventional penalty-based
methods: The resulting system is not numerically stiff af-
ter the collision transient, it enforces constraints for ob-
ject penetration, and it allows for dynamic analysis of the
Modelica model beyond time-domain simulation. We pro-
vide three examples: A bouncing ball, a ball maze, and a
delta robot controlled to achieve soft collision and main-
tain soft contact with an object in its environment.
Keywords: robotics, control

1 Introduction
To derive new control algorithms for robust robot as-
sembly, it is important to construct system-level dynamic
models of the robotic manipulator and the assembly task,
including appropriate representations of object contact
and collision and also the control algorithms themselves.
Of course, Modelica is well-suited for all three of these
domains. It is also important that such models should be
useful for more than time-domain simulation. For exam-
ple, we should be able to linearize the full model at vari-
ous operating conditions, and to compute things such as a
multi-variable frequency response for rigorous design and
analysis of new types of feedback control algorithms. We
also should be able to compute some model objects for
purposes of real time model-based estimation and control.

Our long-term objectives are (1) to invent new control
algorithms, especially for the delta robot, that make as-
sembly processes robust with respect to uncertainty in the
environment (especially uncertainty in the location of an
object), and exploit new types of sensors, such as touch
sensors, (2) to accelerate the process of experimental val-
idation, and (3) to accelerate and simplify the process of
controller parameter tuning that is done at commission-
ing time. Toward these ends, we not only seek to model
and simulate robotic assembly, but we also desire a math-

ematical abstraction of robotic assembly that is consistent
with the Modelica software representation, and is useful
for synthesis and analysis of robust, hybrid feedback con-
trol algorithms. In addition, we intend to use our devel-
oping Modelica library of robot manipulators, assembly
tasks and control algorithms together with the Modelica
Device Drivers library (Thiele et al., 2017) to control the
delta robot in our laboratory in various assembly experi-
ments, without having to recode any aspect of the control
algorithm, although this work is beyond our scope here.

In this paper, we propose an event-driven model of rigid
body collision and contact that combines differential alge-
braic inequalities to represent rigid body motion with a
Finite State Machine (FSM) to represent the state of con-
tact and collisions. Rigid bodies in contact may be mod-
eled as a set of differential equations coupled via a vector
of Lagrange multipliers λ to a set of algebraic equations
that represent the contact, resulting in an index-3 Differ-
ential Algebraic Equation (DAE). Baumgarte’s method of
index reduction (Baumgarte, 1972, 1983) replaces the al-
gebraic constraint equations with a linear combination of
their derivatives with respect to time, resulting in an index-
1 (or 0) set of DAEs (or ODEs). The contribution of this
paper is to allow the structure of this DAE to change dy-
namically from an unconstrained state (λ = 0) to a con-
strained state (λ > 0) in order to model the physical pro-
cess of collision and subsequent contact (and vis versa),
and to observe that the dynamics introduced by Baum-
garte’s method can in fact model the transient associated
with the collision. We introduce the FSM to represent the
discrete state of contact, resulting in a hybrid DAE captur-
ing collision, contact, and loss of contact. This mathemat-
ics can be represented in the Modelica language natively,
and is consistent with other common models of robotic
manipulators, allowing for integrated modeling, simula-
tion and analysis of the robotic system and task.

The paper is organized as follows. In Section 2 we
propose the contact and collision model in general terms,
list its properties, advantages and disadvantages compared
to other state-of-the-art methods, and provide a simple
bouncing ball example. In Section 3 we present a sec-
ond example: A ball maze. We design a feedback control
algorithm to solve the maze and simulate the closed-loop
system, which exhibits a sequence of collisions, using the
proposed model. Finally, we show initial results for a delta
robot assembly task (Bortoff, 2018, 2019), where control
must achieve soft collision between the manipulator and a
workspace object. Conclusions are drawn in Section 5.
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2 Collision and Contact Model
Modeling collisions and contact among solid objects is a
well-studied subject and we refer the reader to the vast
literature on the subject, including works associated with
the computer graphics community (Erleben et al., 2005).
Collision models have been developed for the Modelica
MultiBody library, notably (Engelson, 2000; Otter et al.,
2005; Hofmann et al., 2011a), resulting in the third-party
IdealizedContact library (Hofmann et al., 2011b). These
references discuss several methods of contact detection
and reaction, including impulsive methods and penalty-
based methods. Several works have integrated Modelica
with third-party software such as the Bullet Physics Li-
brary1 or Gazebo2, especially for collision detection but
also to exploit their animation capability and potentially
tap the large collection of robotic technologies represented
in these tools such as advanced sensors (Bardaro et al.,
2017). However, the collision detection algorithms used
by these third party tools are intended primarily for anima-
tion, not dynamic analysis, and have limitations discussed
in the literature e.g., requiring a non-zero collision margin
or having difficulty with very large and very small shapes
(Coumans, 2015).

In this paper we propose an event-triggered, implicit
penalty (force) - based collision approach that is native to
Modelica, and has some advantages (Pros) over conven-
tional penalty - based methods:

P1 It does not result in a stiff set of ODEs, even for stiff
material properties,

P2 It results in steady-state solutions without object pene-
tration, although object penetration occurs during the
transient collision phase, and

P3 It is relatively easy to understand and implement,
completely in Modelica, which allows representation
of the complete physics of a problem in a single tool.

On the other hand, our proposed method has three disad-
vantages (Cons):

C1 It does not conserve energy before and after elastic
collisions,

C2 It is event-driven, meaning it relies on the Modelica
tool’s ability to properly detect events, and

C3 For large numbers of objects, it will certainly be less
memory and time efficient than alternatives.

Despite these disadvantages, the method is useful for our
purpose, and even C1 is not significant except for very
limited and well-defined circumstances that are generally
outside our interest.

To begin, assume that the environment includes a num-
ber of other rigid bodies, which we denote as task objects,

1https://pybullet.org
2http://gazebosim.org

whose collective generalized position and velocity are de-
noted qc and vc respectively. For the task objects, the un-
constrained Lagrangian equations of motion are assumed
to be

q̇c = vc (1a)
Mc(qc)v̇c +Cc(qc,vc)+Dc(vc)+Gc(qc) = fc, (1b)

where Mc is the inertia matrix, Cc represents Coriolis and
centripetal forces and torques, Gc represents forces and
torques due to gravity, Dc represents frictional forces and
torques, fc represents external forces and torques, and the
subscript c denotes “constraint.” In addition, we assume
that all geometric constraints among the task objects can
be expressed as the Nc-dimensional vector inequality

hc(qc)≥ 0, (2)

and that all the geometric constraints between the task ob-
jects and the robotic manipulator can be expressed as the
Nr-dimensional vector inequality

hrc(q,qc)≥ 0. (3)

With this notation, two task objects are in geometric con-
tact if at least one of the corresponding inequalities is zero;
otherwise the task objects are not in geometric contact.
The functions hc and hrc are, generally speaking, the dis-
tance between key features of the task objects and robotic
manipulator, respectively.

For example, if the task objects were three solid cubes
above a rigid surface, then (1) is the 36-dimensional rigid
body equations for the blocks, with each body having
three translational and three rotational degrees of free-
dom. The matrix Mc is the 18×18 block-diagonal inertia
matrix, Cc represents Coriolis and centripetal forces and
torques, Gc represents forces and torques to to gravity, and
Dc represents frictional forces and torques on the collec-
tion of blocks. The vector hc includes distances from each
vertex to the surface, and distances between the vertices
and edges of each block in order to capture the constraint
that every vertex edge of every cube must lie outside the
volume of all other cubes.

In practice, Nc and Nrc may be large, and grow unfavor-
ably as the number of objects increase. Physics engines
such as Bullet reduce the dimension of inequalities that
must be considered in the collision detection problem by
eliminating from consideration those pairs of objects that
are far away, i.e., hci(qc)>> 0 for some i, using heuristics
like bounding boxes, and by computing only the minimum
distance between pairs objects e.g. (Gilbert et al., 1988),
thereby reducing the number of inequalities in the colli-
sion detection problem. These aspects are important in
typical computer graphics applications. In this paper we
do not concern ourselves with efficiency, and concede that
(2) and (3) may be high-dimensional, although for many
specific assembly problems, these are reasonably sized.
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We further assume that the unconstrained (free of contact)
robot manipulator is modeled in the usual manner:

q̇ = v (4a)
M(q)v̇+C(q,v)+G(q) = Bu. (4b)

We now propose that Baumgarte’s method of index re-
duction, which stabilizes a holonomic equality constraint
h(q) = 0 when the constraint is active, can be extended
and used to model both solid object contact and also colli-
sion, if we cause the Lagrange multipliers that correspond
to object-to-object or object-to-robot contact to satisfy an
inequality constraint, and optionally if we modify the co-
efficients and the structure of the constraint stabilization
to represent stiff elastic collision. There are two parts to
this model: The physics equations of constrained motion,
and a finite state machine (FSM) that determines the state
of contact between objects.

We first present the physics equations. Define λc ∈RNc

and λrc ∈RNrc be Lagrange multiplier vectors of the same
dimension as hc and hrc, respectively. For now, denote the
state of each FSM as ci ∈ {0, 1, 2}, for 1 ≤ i ≤ Nc +Nrc,
with ci = 1 corresponding to the contact state. Then we
can define the equations of motion for the combined robot-
task system as

q̇ = v (5a)

M(q)v̇+C(q,v)+G(q) = λ T ∂h
∂q

+λ T
rc

∂hrc

∂q
+Bu (5b)

ḧ+α1ḣ+α0h = 0, (5c)

and

q̇c = vc (6a)

Mc(qc)v̇c +Cc(qc,vc)+Gc(qc) = λ T
rc

∂hrc

∂qc
+λ T

c
∂hc

∂qc
+ f (6b)

and, for 1 ≤ i ≤ Nc and 1 ≤ j ≤ Nrc,

If ci = 1 then ḧci +α1ḣci +α0hci +α2h3
ci = 0 else λci = 0

(7a)

If c j = 1 then ḧc j +α1ḣrc j +α0hrc j +α2h3
rc j = 0 else λrc j = 0.

(7b)

In short, if a constraint is active, i.e., if two objects are in
contact, then the corresponding Lagrange multiplier is an
algebraic state-variable of the index-1 DAE and the corre-
sponding stabilizing constraint equation is active. Other-
wise, the Lagrange multiplier is set to zero, and the corre-
sponding constraint stabilizing equation does not appear.
This ensures that the number of equations and variables is
the same, regardless of the constraint state.

The FSM for each constraint is required for a subtle rea-
son. It might seem that the logic for constraint activation is
that the constraint i (or j) becomes active when hci ≤ 0 (or
hcri ≤ 0), and becomes inactive when λci < 0 (or λrc j < 0),
for 1 ≤ i≤Nc, 1≤ j ≤Nrc, giving two well-defined states.
(For this point, we drop the subscripts for notational sim-
plicity.) However, in Modelica it is not good practice to

Free
Contact = 0

Contact
Contact = 1

Ballistic
Contact = 2

 < 0

h > 0

h  0

h < 0
ḣ < 0

Figure 1. Finite State Machine (FSM) for contact.

have an activation condition (realized using either when
or if), depend on two different variables. Further, it can
occur that λ < 0 while h < 0, because of numerical errors
when both are near zero, or because forces due to other
objects cause λ < 0 while h < 0. In fact, this is common
in practice. We therefore define the three-state FSM dia-
grammed in Figure 1, which ensures correct transition to
and from contact. The Ballistic state is included for the
case that h < 0 and λ < 0, to ensure that the constraint
force can not be negative and pull objects together. Physi-
cally it must always be repulsive i.e., positive.

Several remarks are in order. Note that the Lagrange
multipliers have the physical interpretation as the force
between two objects required to drive the constraint to
zero, according to the second-order stabilized constraint
equation (7). Also, the penetration between objects due to
collision is governed only by corresponding second-order
stabilized constraint equation (7), which is independent of
the other dynamical equations by design. The parameters
α0, α1 and α2 can be tuned for the specific material stiff-
ness and damping properties. Importantly, we have added
a nonlinear cubic term in order to capture nonlinear force
behavior due to penetration (Hofmann et al., 2011a). This
can be any odd-order polynomial or similar function, as
long as (7) is stable.

This formulation has three advantages over more con-
ventional penalty-type methods that explicitly compute a
force between objects in contact as a function of pene-
tration. First, the resulting dynamics (5)-(7) are not stiff
after the collision transient due to (7) has transpired. If we
choose values of α0 and α1 that are of the same time-scale
as the rigid dynamics, while α3 may be large to account
for stiff material properties, then we see that the Lagrange
multiplier is precisely the force that will drive the con-
straint to zero, at which point the eigenvalues correspond
to roots of s2 +α1s+α0, which by design is not stiff. In
other words, we can model collisions between very stiff
objects by making α3 >> 0, and after the transient from
the collision transpires, assuming that the objects remain
in contact, the dynamics will have eigenvalues at the roots
of s2+α1s+α0, so the system need not be stiff. Of course,
the system will be stiff during the collision transient, ne-
cessitating small simulation time steps during this phase,
but a variable step solver will be able to increase step size
after contact is established between objects, and the tran-
sient due to (7) has transpired.
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The second advantage is that the stabilized constraint
equations (7) drive the constraint to zero when the con-
straint remains active. This means that, after the tran-
sient due to that specific collision transpires, the constraint
h = 0 is exactly enforced and there is no penetration, aside
from numerical error which is of the solver tolerance. The
constraint h = 0 will be enforced even if the dynamic sys-
tem continues to evolve: It does not need to be in steady-
state. On the other hand, if we were to compute the force
between objects using a “spring-damper” model, for ex-
ample, then there would be nonzero penetration after the
collision, it would remain nonzero due to the dynamic be-
havior of the rest of the system, even in steady-state. The
penetration can be made small, but at the expense of using
a stiff virtual spring, making the ODE stiff.

A bouncing ball is a good example, with Modelica code
as follows.
model myBouncingBall

Real q(start=1.0), v(start=0.0), f;
Real h, hDot, hDotDot, lambda(start=0);
discrete Integer contact(start=0);
Boolean b1, b2, b3, b4;
parameter Real g=9.81, m=1.0;
parameter Real a0=100, a1=20, a2=1e6;
parameter Boolean linFlag = false;

algorithm
b1 := h <= 0;
b2 := lambda < 0.0;
b3 := h > 0.0;
b4 := h <= 0 and hDot < 0;
if edge(b1) and contact == 0 then

contact := 1;
end if;
if contact == 1 and edge(b2) then

contact := 2;
end if;
if contact == 2 and edge(b3) then

contact := 0;
end if;
if contact == 2 and edge(b4) then

contact := 1;
end if;

equation
if contact == 1 or linFlag then

0 = hDotDot + a1*hDot + a0*h + a2*h^3;
else

lambda = 0.0;
end if;

f = if linFlag then lambda
else contact*lambda;

der(q) = v;
m * der(v) = -m * g + f;

h = q;
hDot = der(h);
hDotDot = der(hDot);

end myBouncingBall;

Figure 2. Bouncing ball simulation for stiff materials and low
damping (α1 = 100, α1 = 1, α2 = 1e6, ). Note that the contact
state passes through the “Ballistic” state, contact = 2, be-
cause λ changes sign, and remains in that state if either h > 0
when λ changed sign, or h < 0 and ḣ > 0 when λ changed sign.
After four bounces, the ball comes to rest, and the constraint
h → 0, and the Lagrange multiplier λ > 0.

The algorithm section computes the FSM. If its
state is contact == 1 then the Lagrange multiplier is
active, and we include the stabilizing constraint equation
with a stiff spring model of contact. If inactive, then we
explicitly set lambda = 0, in order to balance the num-
ber of equations and states. We have included the flag
linFlag in order to compute linearization when the con-
straint is active. It is necessary because Dymola will other-
wise compute a mathematically incorrect linearization at
the final time of simulation when the constraint is active,
due to its numerical algorithm.

Figure 2 shows a Dymola simulation with a small posi-
tive value of damping. This is a typical situation in which
this method is useful, although our typical uses have more
damping than this. However, Figure 3 shows the situa-
tion when the damping is zero, (α1 = 0). Here we see the
ball height increases over time, which means the model is
adding energy to the system, which is not physical. This
is for two reasons. First, the Lagrange multiplier, which
is the reaction force due to collision, includes the steady-
state gravity force mg when the ball is in contact,

λ (t) = (α0q(t)+α2q3(t)+g)m.

If we were to implement a mass-spring type of force dur-
ing collision, this term would be absent and the simulation
would conserve energy within the solver tolerance. So,
during each contact our method adds a little extra energy
that is not physical. This is a clear disadvantage of the
method. The second reason that the energy increases is
that the constraint is active beyond the point in time that h
crosses zero, by design of the FSM, which switches when
λ crosses zero, not when h crosses zero. This is apparent
in Figure 4. The reason the FSM is designed in this man-
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Figure 3. Bouncing ball simulation for stiff materials and zero
damping (α1 = 100, α1 = 0, α2 = 1e6), showing the ball height
growing over time.

ner is that the constraint equations cause h → 0, and so
small numerical errors in h when it is near zero but slightly
positive would cause a switch from contact to non-contact,
even if λ > 0. This would cause a kind of undesirable and
actually unphysical chatter in the system simulation. We
prefer to switch when the constraint force changes sign,
so that objects in contact will remain in contact as long as
their contact force is positive.

Figure 4. Close-up of the transition between contact and non-
contact in Figure 3, which occurs when λ changes sign near
t = 4.262s. Note that when h crosses zero, near t = 4.356s,
λ = 9.81, so additional positive force is applied to the ball for
4.262 < t < 4.356, adding energy to the ball.

We emphasize that the situation when α1 = 0 is not
representative of a typical use of this method, and dis-
cussed here only to be clear about the method’s limita-
tions. Indeed, in this case, the constraint is not stabilized.
Most real problems involving assembly have significant
damping, and in these cases the energy increase due to the
method is negligible.

Figure 5. Rolling ball maze toy (van Baar et al., 2019).
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Figure 6. Ball maze diagram.

3 Ball Maze Example
A ball maze exhibits contact and non-contact physics that
is effectively modeled using the proposed approach. Re-
ferring to Figure 5, the objective of the game is to manip-
ulate the maze orientation in a way to cause the ball to roll
into the center ring. The maze has been used to demon-
strate learning-type control (van Baar et al., 2019), and
typically the manipulation is “tip-tilt” in nature, causing
the ball to roll due to gravity. The objective is challeng-
ing because after the ball passes through a gate, it collides
with a maze ring and once in contact, the configuration is
unstable, so the ball will roll one way or another, frustrat-
ing the player.

Here we will solve the maze using an alternative ap-
proach. Instead of tipping and tilting the maze, we stand it
on end, so that the central axis (of symmetry) is orthogo-
nal to the gravity vector, and we rotate the maze about the
central axis, so that the maze itself has only one degree of
freedom, as shown in Figure 6. The strategy is to use feed-
back to stabilize the ball when it is in contact with a ring,
and then rotate the closed-loop maze system so that the
ball falls through a sequence of gates, eventually reaching
the center. Therefore we need a model that is appropriate
for control system design, and also is appropriate for the
simulation of the ball motion as it comes into and out of
contact with the sequence of rings.
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The ball maze is modeled as

Mq̈+G = HT (q, i)λ +Bu (8a)

ḧ(q, q̇,λ , i)+α1ḣ(q, q̇, i)+α0h(q, i) = 0 (8b)

where q ∈R4, q1 is the angular displacement of the maze,
q2 and q3 are the Cartesian coordinates of the ball center-
of-mass, q4 is the angular displacement of the ball relative
to the base frame,

M = diag(Jm, mb, mb, Jb) , (9a)

G = [0 0 gmb 0]T , (9b)

B = [1 0 0 0]T , (9c)

H(q, i) =
∂h(q, i)

∂q
, (9d)

Jm and Jb are the rotational inertia of the maze and ball, re-
spectively, mb is the ball mass, g is the acceleration due to
gravity, u is an input torque, and λ ∈ R2 is the Lagrange
multiplier vector. When the ball is in contact with maze
ring i of radius rmi, 1 ≤ i ≤ 4, the two holonomic con-
straints

h1(q, i) = q2
1 +q2

2 +(rmi + rb)
2 (10a)

h2(q, i) = rb(q4 −q40)+ rmi(q1 −q10)

+ rmi (atan(q2/q3)− atan(q20/q30)) (10b)

are active so that λ1 and λ2 are time-varying algebraic
states. In (10), h1 is the distance constraint, h2 is
the rolling constraint, rb is the ball radius, and q0 =
[q10 q20 q30 q40]

T is q(t) at the time of collision t = t0
with ring i. When the ball is not in contact with any rings,
i.e., it is passing through a gate, then λ1 = λ2 = 0.

We design a stabilizing feedback controller for the case
when the ball and ring i are in contact using the root lo-
cus method, assuming the ball position along the x-axis,
y1 = q2, and the maze orientation, y2 = q1, are measured
outputs, and splitting the input as u = u1 + u2. Model
(8) and (10) is coded in Modelica, from which we com-
pute a linearization at the open-loop unstable equilibria
q2 = 0, and a pole-zero plot of the system from u1 to y1.
This shows four pole-zero cancellations at s = −5, corre-
sponding to the stabilized constraint (8b) with α1 = 10
and α0 = 25, two pole-zero cancellations at the origin,
one pole at s = −1.1, and one unstable pole at s = 1.4.
This system can be stabilized using two lead-type com-
pensators, one for each output. The first stabilizes the ball
position y1 = q2, with zero at s = −0.6, pole at s = −10
and positive feedback gain, as shown in the root locus in
Figure 7 (top). This moves the unstable pole into the left
half plane, but leaves the two poles at the origin. After
closing this loop, we next compute the pole-zero map for
the system from u2 to y2. This shows the two poles at the
origin and a non-minimum phase zero at s = 0.65. This
can also be stabilized with a lead compensator with zero
at s = −0.05, pole at s = −5.0, and gain k2 = 0.035, as

Figure 7. Root locus showing a lead compensator stabilizing
the ball position y1 = q2 (top), and lead compensator stabilizing
the maze rotation y2 = q1 (bottom).

shown by the root locus in Figure 7 (bottom). The sec-
ond loop has an upper limit on its gain, due to the non-
minimum phase zero, and has a slower response, while the
first loop has a lower limit on its gain, due to the unstable
pole, and has a faster response. The closed-loop system
is realized in Modelica as shown in Figure 8. Note that
a single set of controller gains is effective for any of the
rings 1 ≤ i ≤ 4, but this must be checked by computing a
linearization for each ring radius.

To simulate the ball maze, we require a FSM to switch
the Lagrange multipliers from active to inactive, similar to
Figure 1. However for the ball maze, we have sufficient
damping to prevent bouncing, and the system will move
one-way through the maze, simplifying the logic. Essen-
tially the constraints become active when the ball contacts
a ring, i.e., when h1 changes sign, for the sequence of rings
(note that h1 depends on ring radius i), and become inac-
tive i.e., the ball falls through a gate, when the rotation of
the maze moves the gate under the ball. We can define the
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Figure 8. Feedback Controller for Ball Maze.
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Figure 9. Ball maze FSM.

location of the gates by defining

ψ(q, i) =




q1 + rm1atan(q2/q3)−π/2 for i = 1
−q1 − rm2atan(q2/q3) for i = 2
q1 + rm3atan(q2/q3)−π/2 for i = 3
−q1 − rm4atan(q2/q3) for i = 4

(11)
so that ψ(q, i) changes sign as the ball moves “over” open
gate i. Then the FSM is as shown in Figure 9, and is
straightforward to implement as a Modelica algorithm.

Figure 10 shows results of a Dymola simulation of the
closed-loop system. The ball is initialized in the free state,
and falls toward the outer ring, making contact at about
t = 0.1s. The maze turns counterclockwise beginning at
t = 10s and rotates until the ball falls through gate 1. As it
falls through the gate, in the contact = 2 state, λ = 0 and
the ball moves freely, until it collides with ring 2 at about
t = 27s. The collision causes the large spike in λ , repre-
senting the elastic collision, after which the contact = 3
state is maintained as the maze is rotated clockwise until
gate 2 is below the ball. Thus, as the maze rotates, the sys-
tem switches between the constrained contact state and an
unconstrained free state, although the number of dynamic
states remains constant (8) throughout. The ball maze con-
tinues to rotate until the ball gets to the inner ring, at which
point the controller is turned off.

Figure 11 shows a sequences of screen captures from a

Figure 10. Ball maze simulation. Note the brevity of the free-
motion states, contact = 2,4,6, when the ball passes through a
gate, and when λ = 0.

Dymola animation of the closed-loop system. Note that
we show only three rings here for simplicity. Space con-
straints prohibit a full listing of the Modelica code, which
is available from the conference website or by contacting
the author directly. Note that it would be simpler to ro-
tate the maze in a single direction. However, changing the
direction of q̇1 allows for the maze to retain previously
collected balls in the center. It also shows the slower and
non-minimum phase response of the maze angle q1 to the
reference.

Figure 11. Sequence of ball maze configurations as the closed-
loop system drives the ball toward the goal.
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Figure 12. Delta robot.

4 Delta Robot Soft-Touch Control
The delta robot (Clavel, 1990) shown in Figure 12 con-
sists of three (or more) identical under-actuated arms, ar-
ranged symmetrically about the x3-axis (pointing down).
Each arm consists of a proximal link, rigidly attached to
the servomotor shaft at the base, and a pair of parallel dis-
tal links that are attached to the proximal link by universal
joints. The six distal links are in turn attached to the wrist
flange by universal joints, so that the two distal links as-
sociated with each arm remain parallel during operation.
The configuration provides three translation DOFs of the
wrist flange within the robot’s reachable workspace, while
the orientation of the wrist flange remains fixed. This ben-
eficial feature of the delta robot decouples the translational
kinematics and dynamics of the robot from the rotational
kinematics and dynamics associated with a wrist that is
mounted below the wrist flange (not shown in Figure 12).
The servomotor angles are directly measured, while the
universal joint angles are not measured, but can be com-
puted from the servomotor angles via the forward kine-
matics.

A formulation and Modelica realization of the delta
robot translational dynamics was derived previously
(Bortoff, 2018, 2019) by defining the dynamics for
each unconstrained arm, and then adding the holonomic
coupling constraint representing the connections to the
wrist flange. The resulting index-3 differential-algebraic
equation (DAE) is stabilized using Baumgarte’s method
(Baumgarte, 1972, 1983), giving an index-1 DAE.

The objective here is to derive and simulate a soft-
contact control algorithm for the delta robot. In this case
the task object is a Lego brick on a surface, and the task is
to pick up the brick with a gripper that is mounted to the
wrist flange without sliding the brick along the surface,
despite uncertainty in its location on the surface. Such a
control algorithm would be used in practice to grasp very
fragile objects. To accomplish this, the gripper frame is
moved by the robot servos so that the left finger is close
to the block surface, and then it approaches the block with

Figure 13. Simulation of soft collision and contact. The dis-
tance to the object (top), is commanded by a smooth reference to
be within 5mm of the object in the first 2.5s. Then it approaches
at low velocity of 0.2mm/s, and the position gain kp is reduced
continuously to zero until t = 9s. At this point the robot is in
velocity control mode. Contact is made at t = 12s, and the force
of impact peaks at 90mN, below what would cause the block to
move. Contact is maintained with a force of 40mN, and there is
no motion of the block or bouncing.

low velocity and low impedance so that it does not trans-
fer energy sufficient to cause motion of the block. For this
particular simulation, the gripper servo is not used.

Figure 14 is a block diagram in Dymola showing the
feedback controller. The reference generator computes
smooth reference trajectories for position, velocity and ac-
celeration in task space within constraints on maximum
values for velocity, acceleration and jerk, using cubic
splines. In this specific case, the trajectory is such that
the approach velocity is 0.2mm/s. The PDFF controller
block is a digital PD controller with feedforward

u(k) = kp(k)(r(k)− y(k))+ kd(k)(ṙ(k)− ẏ(k))+ r̈(k)+ f (k)
(12)

where ẏ(k) is computed by filtering y(k) to approximate
the derivative, the feedback gains kp and kd are time-
varying, set by a higher-level controller, and f is an ex-
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Figure 14. Feedback control model for soft contact. Blocks in green are discrete-time control blocks that use the Modelica Syn-
chronous Library and compute forward and inverse kinematics, PD control with variable gains, and gravity torque compensation.
The pink blocks at left compute smooth reference trajectories. The red Brick block computes the dynamics of a block in contact
with a surface, which comes in contact with the delta robot end effector during simulation. The input f into the delta robot model
is the force applied to the end effector by the brick, which is a Lagrange multiplier internal to the Brick model. Our deltaRobot
library is open at left, showing some of the control system components.

ternal input from the left touch sensor, which is not used
here. The Forward and Inverse Kinematics blocks, and the
Gravity Compensator block, compute the forward and in-
verse kinematics, and also a torque to cancel the effect of
gravity on the robot. These functions cannot be computed
analytically for the delta robot, and use Newton’s method
to solve a set of implicit functions, described in (Bortoff,
2018).

To achieve soft contact, the kp gain in the direction of
travel is continuously reduced to zero as it approaches
the brick, putting the robot effectively in velocity control
mode and reducing its impedance at the moment of con-
tact. Closed-loop stability is maintained if

0  kp(k) k2
d , (13)

for fixed kd , which follows from the Circle criteria
(Vidyasagar, 1993). Importantly, there is no heuristic
switch from a “position control mode” to a “velocity con-
trol mode.” Rather it is a single controller that is continu-
ously adjusted between these two extremes along the ref-
erence trajectory as the end effector approaches the task
object. Further, there is no switch from “motion control
mode” to a “force control mode” when contact is detected.
In fact, the robot lacks a force - torque sensor. Rather,
there is a single feedback controller that can achieve soft

contact without any switch. This is important because we
want to eliminate tuning and commissioning effort, and
we desire a control architecture amenable to robustness
analysis.

Figure 13 shows a simulation result of the end effec-
tor approaching and contacting the brick. The contact be-
tween the block and surface, and between the block and
robot is modeled as in Section 2. In this simulation, a
smooth trajectory commands the left finger to approach at
low velocity, while the impedance is reduced by contin-
uously until kp = 0 before impact. From this point for-
ward it is effectively in a velocity control mode. Contact
is made, and the Lagrange multiplier becomes active at
t = 12s. There is no bounce and the force imparted is
sufficiently small to maintain the friction contact with the
surface, so the block does not move. The small force is
maintained after the contact.

5 Conclusions
We have presented a useful model of contact and colli-
sion intended to support development of model-based con-
trol design and analysis for robotic assembly. The advan-
tages and disadvantages of the modeling approach were
discussed. In particular, this method will be effective in
situations involving low numbers of contacts, where it is
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important to enforce penetration constraints after the colli-
sion transient occurs, and in cases where dynamic analysis
is required, not just time-domain simulation. Three exam-
ples illustrate the method, with the ball maze providing a
control design and simulation use case.

There are several important issues that are not ad-
dressed in this paper. First, friction at the contact is not
included, although it would not be difficult to augment
the approach to include it. Second, and more importantly,
redundant constraints, where the Jacobian H is non full
row rank, and therefore the Lagrange multipliers are not
unique, is also not considered. Additional logic or a way
to regularize the problem, i.e., by adding an additional
constraint, might work. But despite these and other dis-
advantages, we intend to use this method to develop a
range of control algorithms for robotic assembly, in ad-
dition to modeling other mechatronic problems in which
contact and collisions are central to the problem.
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