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Abstract
In this paper, the theory of progressive ocean-surface
gravity-waves is discussed, followed by the concept of the
representation of the irregular sea-state by a sea-spectrum.
Fourier series decomposition of the irregular sea-surface
into its constituent regular waves and the method of re-
alizing unique time-records of the sea-surface-elevation
from commonly used sea-spectra is described. A detailed
description of the development of Modelica component-
models to generate regular as well as irregular waves, and
depth-varying current, with an eye on the requirements
imposed by probable integrated simulation scenarios, is
then presented and the results discussed.
Keywords: regular wave, irregular wave, sea-spectrum,
Modelica ocean-engineering library.

1 Introduction
The advantages of developing an OpenModelica ocean
engineering library populated with domain-specific
component-models and functions to carry out the inte-
grated simulation of multi-pyhsical ocean engineering
systems was demonstrated by the authors (Viswanathan
and Holden, 2019). This earlier work:

1. Gives a brief description of the simulation of systems
based on the hydrodynamic response of catenary-
moored non-diffracting floating objects in the pres-
ence of waves and current,

2. Demonstrates the satisfactory agreement of the Mod-
elica simulation results with those obtained using
a popular ocean-engineering commercial software
(Orcaflex), and

3. Brings out the advantages of using a component-
model based simulation approach.

The voluminous nature of the earlier work precluded
the possibility of delving into the theoretical and imple-
mentational details of the various Modelica component-
models of the ocean-engineering library proposed by the
authors, the preliminary version of which is available for
download at github.com/Savin-Viswanathan/
OELib_OMAE2019.

The present work which deals with the development of
Modelica component-models for simulating the kinemat-
ics and dynamics of regular and irregular waves, and depth
varying current, is the first among a series of two papers
which will fill in such gaps in theory and implementation.

2 Theory
The theory presented here upto Section 2.4.2 is a brief
summary of that given in (Dean and Dalrymple, 2001) .

2.1 The Fundamentals
The application of the conservation of mass to a reference
fluid volume yields the continuity equation:
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Here, ρ [kg/m3] is the fluid density, t [s] is time, and u,v,w
[m/s] are the fluid velocities in the x,y,z directions.

Disregarding the effects of surface tension and elastic-
ity, the application of the translational equation of motion
to a fluid particle yields the Navier-Stoke’s equations:
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Here, D
Dt is the material derivative, p [N/m2] is the fluid

pressure, τ [N/m2] is the shear stress where the first sub-
script refers to the surface perpendicular and the second
subscript refers to the direction of the stress, and X ,Y,Z
[N] are body forces along the x, y, and z directions.

2.2 Assumptions and the Governing Equation
The following assumptions are made:

• Incompressible fluid (ρ =constant).

• Inviscid fluid (τ = 0).

• Irrotational flow ( ∂w
∂y = ∂v

∂ z ,
∂w
∂x = ∂u

∂ z and ∂v
∂x =

∂u
∂y ).
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• Low wave steepness, i.e., (H � L).

• Long crested waves (2D flow, in x and z directions
only).

• Horizontal and time-invariant bottom boundary.

Assuming incompressible fluid and long crested waves,

Eqn. (1) → ∂u
∂x

+
∂w
∂ z

= 0. (5)

Assumption of inviscid fluid gives the Euler equations:
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The assumption of irrotational flow makes it possible
to define a scalar velocity potential φ(x,y,z, t) [m2/s] such
that its directional derivative gives the fluid velocity in that
direction. i.e.,
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∂x

, w =
∂φ
∂ z

. (8)

Thus, for an incompressible, irrotational flow in the x
and z directions, the integrated form of the Euler equation
yields the Bernoulli equation for unsteady potential flow,
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where C(t) is the Bernoulli term and is a constant for
steady flows.

With u = [u,w]T, (5) may be expressed in vector form
as ∇.u = 0. From (8), u= ∇φ , so we have

∇.∇φ = ∇2φ =
∂ 2φ
∂x2 +

∂ 2φ
∂ z2 = 0. (10)

Equation (10) is the well-known Laplace equation, and
consitutes the governing differential equation which is
valid throughout the fluid domain. Our interest is in deter-
mining the velocity potential which satisifies the Laplace
equation, which then makes it possible to determine the
fluid velocities at any point in the fluid domain.

The Bernoulli equation relates the fluid velocities to the
the fluid pressure, and the integration of the fluid pressure
along the surface of any submerged/floating object gives
the force that the fluid exerts on the object, which is, in
most cases, the element of interest in wave-body interac-
tion problems.

2.3 The Boundary Conditions
In seeking a solution for the velocity potential in (10), we
make use of the following physical conditions which must
be satisfied by the fluid velocity and pressure, at the do-
main boundaries:

1. The Kinematic Free-Surface Boundary-Condition
(KFSBC) stemming from the fact that there cannot
be any fluid flow across the interface between the liq-
uid domain and the atmosphere at the free surface of
the fluid.

2. The Bottom Boundary-Condition (BBC) stemming
from the fact that there cannot be any fluid flow
across the sea floor.

3. The Dynamic Free-Surface Boundary-Condition
(DFSBC) stemming from the fact that ‘free’ surfaces
such as the air-water interface cannot support pres-
sure variations across it, and hence must be capa-
ble of responding in order to maintain the pressure
continuity across the liquid and gaseous domains.
This displacement of the free surface means that the
position of the upper boundary is not known a pri-
ori in the water-wave problem. For small-amplitude
waves, this condition is given by the requirement that
the pressure on the free surface is uniform along the
wave form.

4. The Spatial and Temporal Periodicity Condition at
the Lateral Surfaces (LPBC) stemming from the fact
that the solution we seek is the velocity potential as-
sociated with a wave which is periodic in both space
and time.

Mathematical expressions for the kinematic boundary
conditions may be derived from the equation of the form
F(x,y,z, t) = 0, describing the boundary surface. For a
temporally varying surface, the total time-derivative of the
surface is zero, on the surface. Hence, for a 2D wave
surface-profile,
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Or, rearranging and using vector notation,
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The kinematic boundary condition is thus expressed as

u.n =−∂F/∂ t
|∇F|

on F(x,y,z, t) = 0. (13)
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At the free surface, F(x,z, t) = z−η(x, t) = 0, where
η(x, t) is the displacement of the free surface about the
horizontal plane. Equation (13) gives
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on z−η(x, t) = 0. (14)

Taking
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(14) gives the KFSBC as
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on z = η(x, t). (16)

Assuming a horizontal, time-invariant bottom at z =
−h, F(z) = z + h = 0. Equation (13) gives u.n = 0 at
z =−h. Here, n = k, and hence the BBC can be expressed
as

w = 0 on z =−h. (17)

By specifying a uniform pressure (pη =constant) along
the wave form in the Bernoulli equation at the free surface,
the DFSBC may be expressed mathematically as
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The LPBCs may be expressed as

φ(x, t) = φ(x+L, t), (19)
φ(x, t) = φ(x, t +T ). (20)

Here, L [m] is the wave length and T [s] is the wave period.

2.4 Solution of the Boundary Value Problem
The BVP to be solved is thus the Laplace equation (10)
subject to: 1. the KFSBC in (16), 2. the DFSBC in (18),
3. the BBC in (17), and the LPBC in (19) and (20). The
diagrammatic representation of the problem is shown in
Figure 1.

2.4.1 Manipulation of the Free Surface Boundary
Conditions

On carrying out a non-dimensional analysis of the terms in
the KFSBC and the DFSBC, under the assumption of low
wave steepness, i.e., H/L � 1, we notice that u ∂η

∂x � ∂η
∂ t ,

u ∂η
∂x � ∂φ

∂ z and
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,
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∂ t .
Further, the KFSBC and DFSBC are to be evaluated at

z=η(x, t), which is a priori unknown. However, on taking

Figure 1. Boundary value problem for the velocity potential.
Adapted from (Dean and Dalrymple, 2001).

a Taylor series expansion of the BCs about the mean free
surface at z = 0, we notice that the second-order and sub-
sequent higher-order terms can be neglected; hence, we
can safely assume the validity of the BCs at the mean free
surface instead of the actual free surface. Details about
linearization and shifting can be found in (Techet, 2005).

Taking the pressure at the free surface as the constant
atmospheric pressure, we can eliminate the Bernoulli con-
stant and the pressure term in (9) as demonstrated in (An-
dersen and Frigaard, 2011). Thus, the modified BCs are:

KFSBC:
∂φ
∂ z

=
∂η
∂ t

on z = 0, (21)

DFSBC:
∂φ
∂ t

+gη = 0 on z = 0. (22)

Differentiating (22) w.r.t. t and using (21), we can
combine both the BCs to give the Combined Free-Surface
Boundary-Condition (CFSBC) as:

CFSBC:
∂ 2φ
∂ t2 +g

∂φ
∂ z

= 0 on z = 0. (23)

2.4.2 Complex Exponential Form of the Velocity Po-
tential

It is often mathematically advantageous to use the com-
plex form of the velocity potential; see p. 4 of
(Chakrabarti, 1987). Since the solution we seek is related
to a progressive sinusoidal wave, we may express the ve-
locity potential as

φ = ϕ(z)ei(kx−ωt). (24)

The LPBCs were utilized in the formulation of the above
equation, the real part of which represents the velocity po-
tential of a sinusoidal wave progressing in the positive x-
direction; see pp. 2, 12 of (Krogstad and Arntsen, 2000).
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The BVP is now given by:

Laplace eqn:
∂ 2ϕ
∂ z2 − k2ϕ = 0. (25)

CFSBC: −ω2ϕ +g
∂ϕ
∂ z

= 0 on z = 0. (26)

BBC:
∂ϕ
∂ z

= 0 on z =−h. (27)

Assuming a solution of the form

ϕ(z) = C1e−kz +C2ekz, (28)

Eqn. (27) → C1ke−kh −C2kekh = 0, (29)

Eqn. (26) → (gk−ω2)C1 − (gk+ω2)C2 = 0. (30)

The above homogenous equation system has non-trivial
solutions only when the determinant is zero. This gives
the dispersion relation

ω2 = gk tanh(kh). (31)

Now, setting C1 =
1
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1
2 Be−kh,

Eqn. (28) → ϕ(z) = Bcosh[k(z+h)], (32)
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Considering that that highest value of η is the wave am-
plitude A = H/2 [m], from (33) and (34), we have
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ω
1
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The complex exponential form of the velocity potential
may now be expressed as
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−igA

ω
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ei(kx−ωt). (36)

2.5 Kinematics and Dynamics of Regular
Waves

Considering the real part of the velocity potential in (36),
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Here, u̇ and ẇ [m/s2] are the water particle accelerations,
δx and δz [m] are water particle displacements from their
mean position, and p [N/m2] is the dynamic pressure.
(Chakrabarti, 1987).

2.6 Kinematics and Dynamics of Irregular
Waves

The process of linearization carried out in Section 2.4.1
implies the validity of the superpostion principle with re-
gards to the quantities expressed in Section 2.5. This,
in turn, justifies the representation of the irregular wave
parameters as the summation of the parameters of con-
stituent regular waves; or, in other words, as a Fourier se-
ries, as represented in Figure 2.

The way of describing the sea-state is linked to the en-
ergy content in waves. Linear theory gives the wave en-
ergy per unit area of the sea surface due to a regular wave
as

E =
1
2

ρgζ 2
0i. (46)

Here, ζ0i [m] is the amplitude of the regular wave under
consideration; see p. 97 of (Dean and Dalrymple, 2001).

The spectrum for the irregular wave process is defined
such that the area of the wave spectrum Sη(ω) within the
frequency interval ∆ω represents the wave energy for the
same frequency interval. Hence, from a known spectrum
function, we can find the amplitude ζ0i [m] of the har-
monic wave component which represents the wave energy
for a given frequency resolution using (47); see p. 23 of
(Faltinsen, 1999), and p. 122 of (Chakrabarti, 1987):

ζ0i =
√

2Sη(ωi)∆ω. (47)
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Figure 2. Concept of Fourier series representation of irregular
waves and the wave spectrum. Adapted from (Faltinsen, 1999).

Once the amplitudes corresponding to each of the com-
ponent regular waves is known, randomness may be in-
troduced by the inclusion of an arbitrary phase difference
εi [rad]. The property of the irregular wave may now be
expressed as the summation of the property of the com-
ponent waves of specified frequencies with random phase.
For e.g., the sea surface elevation (SSE) at a given x co-
ordinate is expressed by equation (48); see p. 123 of
(Chakrabarti, 1987):

η(x, t) =
N

∑
i=1

ζ0i cos(kix−ωit − εi). (48)

Here, N is the total number of wave components (fre-
quency bands), ζ0 [m] is the component wave amplitude,
ω [rad/s] is the wave angular frequency, and ε [rad] is the
phase. Subscript i refers to the number of the component
wave under consideration. The wave number k [rad/m]
is to be determined from the dispersion relation given in
(31). g [m/s2] is the acceleration of gravity and d [m] is
the water depth. Sη(ωi) [m2s] is the energy spectral den-
sity and ∆ω [rad/s] is the width of the frequency bands
dividing the total wave spectrum.

The even distribution of component frequencies will
cause the resultant wave to be periodic with a period of
of 2π/ωmin [s], and thus not truly irregular. Hence, the
component frequency within each frequency interval is se-
lected based on a unifrom random distribution, as advised
in p. 209 of (Fossen, 2011).

3 Modelica Implementation
3.1 General Considerations
Most simulation problems envisaged would require, in one
way or the other, the determination of wave/current forces
acting on structures with varying degrees of restraint as
illustrated in Figure 3. Since the wave forces vary both

temporally and spatially, and since the location informa-
tion is contained in the component-model for the body
in a wave-body interaction problem, it was decided that
a wave component-model that generates all the required
parameters that allows for the determination of the vari-
ous quantities given in the equations under Section 2.5, at
any location (x, y, z) within the problem domain, at any
specified simulation time t, would be the best approach.

Figure 3. Expected simulation scenarios.

Once the wave parameters such as component fre-
quencies, corresponding amplitudes and phases are deter-
mined, they would have to be made available to the body
component-model for determination of wave properties at
the desired location. Towards this end, an information bus
holding the required data is to be specified from which the
body component-model may then access this data.

Considering the above general requirements, the system
model for integrated simulation may be represented by the
block diagram in Figure 4. While the wave, current, and
data bus are common components for any ocean engineer-
ing simulation, the other components may vary depending
upon the scope of the simulation. The rest of this paper is
dedicated to the implementation of the component-models
for waves and current.

Figure 4. General block diagram for integrated simulation of an
ocean engineering system.

Flow-charts provided in the following sub-sections
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have been prepared with ocean engineers, most likely to
be unfamiliar with Modelica, in mind, and some elements
might appear superfluous to the Modelica savvy reader.

3.2 Regular-Wave Component-Model
The height of the regular wave Hr [m], time period Tr [s],
water depth d [m], water density ρw [kg/m3], ramp time
Trmp [s], delay time Tdel [s] and the number of frequency
components nωi = 1 are specified as parameters in the
Regular_Airy_Wave component model. Tsim [s] is the
required duration of simulation.

Trmp is used to ramp the wave height in order to prevent
impulse wave loads at the start of the simulation, while
Tdel maybe used to start the waves at a specified time into
the integrated simulation.

The wave angular frequency ω = 2π/T [rad] and d
are passed on as parameters to the function waveNum-
berIterator, which iterates for the wave number based on
the dispersion relation given in (31), and returns the final
value to Regular_Airy_Wave.

A data connector WaveDataConnector transmits d,
ρw, ω , T , k, ε , ζ0i, and SSEX0 to the data bus which
is an expandable connector named the EnvironmentBus.
Here, ε [rad], the phase difference is redundundant for the
case of a regular wave and is set to zero, while SSEX0 is
the sea surface elevation calculated at x = 0 using (38).

The algorithm for generation of regular wave parame-
ters is depicted in the flow chart given in Figure 5, and the
flow chart for the function waveNumberIterator is given
in figure 6. The first value for the wave number iteration is
taken to be k0 =

2π
L0

, where L0 =
gT 2

2π [m] is the deep-water
wave length as given on p. 66 of (Dean and Dalrymple,
2001).

Equations (37)–(45) can then be used to calculate the
wave properties at the required position coordinates, con-
tained in the body component-model, at any required sim-
ulation time t [s].

3.3 Irregular-Wave Component-Model
The generation of component wave parameters based on
the Pierson-Moskowitz spectrum is considered for de-
tailed description. The algorithm for the irregular-wave
component-model IRW_PM_RDFCWI is shown in Fig-
ure 7.

The water depth d [m], significant wave height Hs [m],
the ramp time Trmp [s], the lower cut-off frequency ωmin
[rad/s], the upper cut-off frequency ωmax [rad/s], and the
number of frequency components to be considered nωi,
are specified as parameter inputs.

The frequency resolution ∆ω = (ωmax − ωmin)/nωi
[rad/s] is determined. The component frequency within
each frequency interval ∆ω is then selected based on a
uniform random distribution by the function frequencyS-
elector.

To generate a vector of random numbers, a function
randomNumberGenerator based on the Model-
ica.Math.Random.Generators.Xorshift64star random

Figure 5. Flow chart for regular-wave component-model.

number generator, with a for loop included, to return a
vector of random numbers of specified size, correspond-
ing to the number of frequency components nωi, is called.
The frequencySelector function is a simple function
that shifts the component frequencies randomly within
the associated frequency interval based on the generated
random numbers rnd_shft[nωi].

Once the component frequencies are identified, the cor-
responding spectral values are determined by calling the
function spectrumGenerator_PM which calculates the
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Figure 6. Flow chart for iteration of the wave number.

spectral density values based on the empirical formula

Sη(ωi) =
5π4H2

s

T 4
p ω5

i
exp

(
−20π4

T 4
p ωi

)
. (49)

Here, Tp [s] is the peak period of the spectrum, and is re-
lated to Hs through the relations Tp =

2π
ωp

, and ω2
p =

0.161g
Hs

.
ωp [rad/s] is the peak angular frequency; see pp. 105–107
of (Chakrabarti, 1987).

In the future, generation of wave records based on other
commonly used sea-spectra may be incorporated by defin-
ing the correspoding spectrum generating functions.

The amplitudes of the component waves ζ0i are then de-
termined using (47), and corresponding wave numbers ki
are determined using the function waveNumberIterator
described in Section 3.2. The randomly distributed phases
are determined by a second call to the function random-
NumberGenerator. This function call returns a vector
ε[nωi] of uniformly distributed random numbers in (0,1]
and hence, the associated phase difference is expressed as
2πε [rad] .

Having determined all the required parameters, the sea
surface elevation at x = 0, SSEX0 [m], is then calculated
using the formula given in (48). The values are then linked

Figure 7. Flow chart for the irregular-wave component-model.

to the expandable connector EnvironmentBus using the
WaveDataConnector as described in Section 3.2.

3.4 Component-Model of Depth-Varying Cur-
rent

The component-model for current is a simple block which
produces as its output two vectors zcg[n] and Ucg[n]. zcg
contains the co-ordinate information and Ucg contains the
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corresponding current velocities. The parameters spec-
ified are the zcg[n] which is a vector containing the n
depth positions where current velocities are defined, Uf [n]
which is a vector containing the fully developed current
values, and the ramp time Trmp [s]. Ucg[n] holds the in-
stantaneous value of the ramped current. A sinusoidal
ramping function is used for smooth ramping. A Cur-
rentDataConnector links the zcg and Ucg values to the
expandable connector EnvironmentBus. The current ve-
locity at any location may now be computed by the differ-
ent body component-models by interpolation.

4 Results
All results presented below are based on outputs
of the above component models. Simulation files
are available for download at github.com/
Savin-Viswanathan/Modelica2020-a.

4.1 Regular Wave
The simulation model Check_RegularWave under the
sample simulations in the above link calculates the wave
properties based on the parameters generated by the Reg-
ular_Airy_Wave component-model.

Figure 8a shows a sample sea surface elevation at x = 0
[m] with Tdel = 5 [s], Trmp = 10 [s], Hr = 1 [m], d = 10
[m] and Tr = 3 [s], for a simulation interval of 0–30 [s],
while Figure 8b shows the progressive wave profile for the
same wave in the spatial interval 0–30 [m] for different
simulation times.

0 5 10 15 20 25
−0.5

−0.25
0

0.25

0.5

Simulation time [s]

SS
E

[m
]

(a) Sea surface elevation at x = 0 for t = [0,30] s.

0 5 10 15 20 25

−0.5
0

0.5

t = 15 s

t = 15.9 s

t = 16.5 s

t = 17.1 s

x co-ordinate [m]

SS
E

[m
]

(b) Wave profile at different simulation time steps for x = [0,30] m.

Figure 8. Sea surface elevation and the progressive wave profile.

Figure 9a shows the wave profiles at t = 0 [s] for differ-
ent Tr, and Figure 9b shows the trajectory traced by water
particles with different mean positions during a complete
wave cycle, at different depths, for the different wave pe-
riods, in a water depth d = 10 [m]. We observe that,

• For Tr = 3 [s], k = 0.447414 [m−1], and kd > π . The
wave is in deep water and the trajectories are circular.
The displacements in the vertical and horizontal di-
rections decay exponentially with depth and the par-
ticles near the bottom boundary have no horizonatal
or vertical displacements.

• For Tr = 6 [s], k = 0.129834 [m−1], and π
10 < kd < π .

The wave is in intermediate water and the trajecto-
ries are elliptical. The displacements in the vertical
and horizontal directions decay with depth and the
particles near the bottom boundary have only hori-
zontal displacements.

• For Tr = 22 [s], k = 0.029246 [m−1], and kd < π
10 .

The wave is in shallow water and the trajectories are
elliptical. The displacements in the vertical direction
decay linearly with depth, while the horizontal dis-
placement is near constant at all depths.

Tr = 3 s; Tr = 6 s; Tr = 22 s
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(a) Profiles of waves with different periods.
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(b) Water particle trajectories of waves with different wave periods.

Figure 9. Wave profiles and water particle trajectories.

Figure 10a shows the intstantaneous wave profile for a
regular progressive wave with Tr = 6 [s], Hr = 1 [m], in
a water depth d = 10 [m], when there is a crest at x = 0
[m]. Figure 10b–10f shows the quiver plots for the instan-
taneous velocities of water-particles with different mean z
co-ordinates, under different x co-ordinates.

An important consideration to keep in mind is that the
linearization of the boundary conditions in the derviation
of the velocity potential has the effect that the water par-
ticle kinematics derived from such a potential does not
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Figure 10. Wave profile (a), water-particle velocities (b)–(f).

account for the change of position of the particle within
the fluid, and hence the theory cannot give a proper de-
scription for flow velocity and acceleration in the region
between the still water level and the wave crest and in the
void to the wave trough. Extrapolation of the values is, in
general, not recommended since the wave forces will be
overestimated. A better way is to apply Wheeler stretch-
ing or move the profile for velocity and acceleration to the
instantaneous sea surface; see p. 221 of (SINTEF, 2014).

Figure 11 shows the pressure distribution at various x
co-ordinates for the same wave as above. The dynamic
pressure above z = 0 [m] has been calculated using a trun-
cated Taylor series for small positive distances, as given
on p. 84 of (Dean and Dalrymple, 2001).

4.2 Irregular Wave
Figure 12a depicts a Pierson-Moskowitz spectrum of Hs =
1 [m] generated by the spectrumGenerator_PM func-
tion, while Figure 12b depicts the sea surface elevation for
an irregular wave record with 100 frequency components,
generated from the spectrum by the IRW_PM_RDFCWI
irregular-wave component-model with Trmp = 10 [s],
Tdel = 0 [s], ∆ω = ωmin = 0.03141 [rad/s], and ωmax =
3.141 [rad/s]. Figure 12c shows an expanded view of the
same wave record in a shorter time interval, for clarity.

4.3 Depth-varying Current
Figure 13 depicts the instantaneous profile for a depth
varying current which is based on the output of the Cur-
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Figure 11. Pressures beneath the wave crest, down-crossing,
and trough.
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(b) SSE at x = 0 m for time interval [0, 400] s.
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(c) SSE at x = 0 m for time interval [0, 60] s.

Figure 12. Irregular waves.

rentProfile_4pt component-model. The current is ramped
up to full value using the parameter Trmp = 5 [s].
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5 Conclusion
General considerations to be kept in mind while formu-
lating a framework for carrying out integrated simulation
of ocean-engineering systems is presented and the algo-
rithms for development of Modelica component-models
for the generation of regular and irregular waves are de-
scribed. The implementation of a simple component-
model for generation of depth varying current is also pre-
sented.

Graphical representation of the wave kinematics and
dynamics based on the output of the component-models
for regular waves are then presented to show satisfactory
agreement with general results discussed in (Dean and
Dalrymple, 2001). A sample sea-surface-elevation based
on the output of the component-model for irregular waves
is presented. Since, within the assumption of linearity,
the properties of the irregular wave are a linear combina-
tion of the properties of the consitutent regular waves, it is
deemed that the output of the irregular wave component-
model is satisfactory. Graphical representation of the out-
put of the component-model for depth varying current is
then presented.

For a better understanding of how these component
models perform within an integrated simulation scenario,
readers may refer to (Viswanathan and Holden, 2019).
The present paper fills in for the lack of theoretical
and implementational details for the wave and current
component-models in the above work.

Theory and implementation of component-models
for non-diffracting floating objects and for mooring
forces based on the quasi-static catenary approach, used
in (Viswanathan and Holden, 2019), is discussed in
(Viswanathan and Holden, 2020), along with compari-
son of results for the same system modelled in the com-
monly used ocean-engineering software Orcaflex. Satis-
factory agreement of surge/heave responses, and of Mori-
son forces under various combinations of wave and cur-
rent loading is demonstrated in (Viswanathan and Holden,
2020), and these maybe taken as proof for the correct rep-
resentation of wave-current kinematics by the component

models discussed in this work.
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