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Abstract 
Commonly used deterministic methods are unable to 
capture the randomness in occupant behavior and its 
impact on electric power consumption. In this paper, we 
propose a new data-driven model to capture occupant 
behavior in a stochastic manner. Unlike existing models 
and prediction tools, this new model does not require 
occupant presence data and can learn occupants’ arrival 
and departure time based on lighting power 
consumption data, which is more readily available than 
occupant presence data. We applied this occupant 
behavior model to lighting power consumption 
prediction and implemented the entire prediction 
process in Modelica. We then validated the Modelica 
model by comparing the predicted daily, weekly and 
monthly peak lighting power with measurements from 
two small commercial buildings. The results suggest 
that the prediction matches the measurement within 
acceptable deviations of 7%. The results also indicate 
that the proposed stochastic model performs better for 
long-term prediction of lighting power (monthly and 
weekly) than the short-term (daily). 
Keywords: Occupant behavior modeling, occupant 
presence prediction, lighting power prediction, 
regression model, stochastic simulation 

1 Introduction 
The increasing penetration of renewable energy is 
introducing more variability within the power grid (J. 
Wang et al. 2018). To better balance generation and 
consumption, the power demand side needs to become 
more flexible and even more controllable. Some studies 
focus on estimating building load flexibility by 
controlling thermostatically controllable loads (TCLs) 
such as HVAC systems and water heaters in buildings 
(Wu et al. 2018; Zhao et al. 2017). Compared to TCLs, 
the lighting system has the advantage of shorter 
response time which makes it more suitable for faster 
demand response mechanisms (e.g., shimmy).  

The stochasticity of occupant behavior and its impact 
on power and energy consumption presents a challenge 
to accurate real-time estimation of building electric 
loads. Traditional building energy modeling tools use 

static hourly schedules both for occupant presence and 
building equipment. This leads to discrepancies between 
the simulated power shape and the actual consumed 
power (Luo et al. 2017; Kim et al. 2017), especially for 
short-term prediction scenarios such as those needed for 
fast demand response. Limited data availability is a 
second challenge, as due to privacy reasons, occupant 
sensor data is often unavailable. These challenges must 
be accounted for in theoretical and model-based studies 
on occupant behavior and its related impacts on the 
power consumption and flexibility characterization of 
the built environment.  

For commercial buildings, existing occupant 
presence prediction models have been developed mainly 
on single office rooms. Wang et al. used exponential 
distribution to predict the vacancy intervals of single 
offices (D. Wang, Federspiel, and Rubinstein 2005). 
Small commercial buildings have not gained enough 
attention concerning occupant behavior studies.  

Lighting prediction models have been investigated 
over the past 40 years, and the research points to strong 
correlation between occupants’ presence and the 
lighting status in a zone. The first published study for 
occupants’ light switching behavior in office buildings 
found that switching mainly takes place when entering 
or vacating a space and the switch-on probability on 
arrival exhibits a strong correlation with minimum 
daylighting illuminance in the working area (Hunt 
1980). Manual switch-off probability of lights is 
strongly correlated with the expected length of absence 
(Pigg, Eilers, and Reed 1996). Later, this research was 
expanded by the study of correlations between 
intermediate switch-on/-off behavior and illuminance 
levels (Reinhart and Voss 2003).  

In this paper we propose a methodology for occupant 
presence and lighting power prediction based on 
minute-level power meter data. We apply the 
methodology for two small commercial buildings use 
cases (one bakery and one ice cream shop) and validate 
the prediction performance with real data collected from 
building sites. Here we present only the prediction of 
occupant presence and lighting power. In future work 
we will extend the methodology to other loads driven by 
occupant behavior. 
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The innovation of this work lies in: (1) The proposed 
method can be applied to occupant presence prediction 
without occupancy sensor data and it has been validated 
against real power meter data. (2) The method can be 
used for sub-hourly power demand prediction within 
acceptable deviations of 7%. (3) The method could be 
applied to other building systems and the Modelica 
model is extensible and scalable. The rest of the paper is 
organized as follows: Section 2 presents the 
methodology. Section 3 discusses the results. Section 4 
concludes this paper with future work and limitations. 

2 Methodology 
Our method is based on the assumption that the usage of 
the lighting system and its associated power 
consumption is strongly determined by the presence of 
the occupants in the building spaces. This assumption 
allows us to extract occupant presence schedules from 
lighting power data. We then use the extracted presence 
data to train logistic regression models that predict 
people’s arrival and departure times. The trained 
probability models are then implemented in Modelica 
language to reproduce building occupancy patterns. The 
lighting power is then predicted by multiplying the 
occupant presence value (0 or 1) with the observed 
nominal lighting power. We then extend the model to 
address realistic scenarios of multi-stage lighting power. 
To validate our model, we compare the simulation 
results with the lighting power data collected at two 
building sites and evaluate the model performance with 
respect to several statistical metrics.  

The following flowchart (Figure 1) shows the 
research workflow for the results presented in this paper. 

 
Figure 1. Research and modeling workflow. 

2.1 Determine Occupant Presence 
In this section, we discuss the extraction of occupant 
presence information from the lighting power data. As 
indicated in the literature review, occupant arrival time 

and departure time has a strong correlation with the 
lighting power utilization: According to Hunt’s work 
(Hunt 1980), the action of turning on the lights depends 
on the minimum illuminance level on the working plane 
upon arrival and people tend to leave the lights on until 
the space is fully empty. This is consistent with our 
observation on the lighting power data in the two studied 
buildings (C2: ice cream shop and F1: bakery). As 
plotted in Figure 2 and Figure 3, once the lights are 
turned on, they will remain on for the whole day until 
all the people leave the space. This means that in this 
case the illuminance level is not a strong driver for the 
light utilization. In our preparation work where we used 
regression of lighting power based on indoor 
illuminance levels, prediction accuracy was relatively 
low. In this paper, we will assume that people in the two 
studied buildings are not sensitive to the illuminance 
levels and will turn on the lights once they enter the 
space and will keep the lights on while they are there. In 
other words, lights are not switched on to increase work-
place illuminance levels, but rather to show potential 
customers that the store is open. Based on this 
assumption, we extract the occupant presence 
information from the lighting power data and regard it 
as the ground truth.  
 

 
Figure 2. Lighting power and occupant presence (C2: ice 
cream shop). 
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Figure 3. Lighting power and occupant presence (F1: 
bakery). 

To convert the lighting power data into occupant 
presence information, we first cleaned the power meter 
data by removing obvious outliers such as values that 
are extremely large for lighting systems. Then, we 
selected the threshold for determining occupant 
presence (e.g., 0 for absent; 1 for present) to avoid 
oscillations in presence status. For instance, the 
threshold for the ice cream shop is 50 W; for the bakery 
is 350 W. Any power value above this threshold is 
converted to 1 and below this threshold into a 0. Because 
the power data has 1-minute resolutions, we will make 
the assumption that presence or absence of 1 minute can 
be neglected and we will filter out two consecutive 
changes of occupant presence to eliminate frequent 
oscillations in the resulted presence data.  

The lighting power shapes shown in Figure 2 and 
Figure 3 indicate the different characteristics of the two 
buildings. For the ice cream shop, only one power value 
occurs every day regardless of weekday or weekend. 
However, for the bakery, two distinct levels are 
observed in the power shape. Hence, for his case, we 

divide the power shape into two parts namely base 
lighting power (Figure 4) and additional lighting power 
(Figure 5) and we model them separately. This two-
stage lighting behavior is probably caused by zoning of 
the lighting system. The expression for multi-stage 
lighting power can be described with Eq. 1. 

𝑃𝑃(𝑡𝑡) = 𝑎𝑎0(𝑡𝑡)𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑎𝑎1(𝑡𝑡)𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 +⋯
+ 𝑎𝑎𝑛𝑛−1(𝑡𝑡)𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛−1 (1) 

𝑃𝑃 is the lighting power; 𝑎𝑎𝑖𝑖 is the binary variable that 
indicates the status of base or extra lighting; n is the 
number of stages. Both 𝑃𝑃  and 𝑎𝑎𝑖𝑖  are time dependent. 
Here, 𝑎𝑎0 indicates the building occupancy and the rest 
of them indicates the on/off of extra lighting devices. 𝑎𝑎𝑖𝑖 
is predicted with logistic regression models introduced 
in Section 2.2. 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 are the average power 
value of each stage. For C2, 𝑛𝑛 = 1; for F1, 𝑛𝑛 = 2.  

2.2 Train Logistic Regression Models 
The prediction of occupant presence could be viewed as 
a classification problem. As discussed before, the arrival 
and departure behavior in the two studied buildings 
follows the same pattern for weekdays and weekends 
regardless of the indoor illuminance level. Hence, the 
main feature for classifying occupant presence is the 
time of the day. We chose logistic regression as our 
model for the training because: (1) it is a linear classifier 
and is easy to train; (2) it can reach the same level of 
accuracy as non-linear classifiers; (3) it is easy to 
implement in Modelica. We divided the arrival and 
departure behavior into two models and trained them 
separately as they have opposite trends along time of the 
day.  

To rule out the impact of seasonal change in the 
occupant behavior, the training and validation datasets 
were selected from the summer of 2018. June and July 
data were used for the training and August data was used 
for the validation. The accuracy is defined as the rate of 
classifying the data point into the right group. The 
confusion matrices for the test datasets of all the 
regression models are shown in Table 1. The format of 
the confusion matrices follows the pattern in Table 2. 

Table 1. Confusion Matrices for Classification 
Performance. 

C2 
Arriv

al 

3693 44 F1 Arrival 
2736 132 
118 1406 

31 624 F1 
Departure 

1797 260 
C2 

Depa
rture 

283 60 273 2062 
F1 Extra 

On 
16 0 

4 1849 3 0 

Table 2. Example Confusion Matrix (C2 Arrival). 
 Predicted No Predicted Yes 

Actual No 3693 44 
Actual Yes 31 624 

Figure 4. Base lighting power and occupant presence in 
F1 bakery. 

Figure 5. Extra lighting power and lighting status in F1 
bakery. 

73



76 10.3384/ECP20169         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020   MARCH 23-25, BOULDER, CO, USA

The accuracy of the classifier is then calculated with 
Eq. 2. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
= 𝑁𝑁𝑁𝑁.  𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁.  𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (2) 

For building F1, the lighting power is divided into the 
base power and the extra power. The base part reflects 
occupants’ arrival and departure and is regressed in 
dependence on time of the day. The frequency (i.e., 
number of total times) of extra lights on of F1 in 2018 is 
plotted in bars (Figure 8). From the figure, we can see 
that the status of the extra lighting has a correlation with 
day of week. Hence, the feature for this part is chosen as 
day of week. Also, from the figure, we see that the total 
frequency of extra lights on in 2018 is only 8.8%. To 
deal with the imbalance in the training dataset, we 
adopted the Synthetic Minority Over-sampling 
Technique (SMOTE) (Chawla et al. 2002), which made 

the minority (extra lights on) class equal to the majority 
class (extra lights off) by creating synthetic samples of 
the minority class. The logistic regression parameters 
for each model are listed in Table 3. The probability 

  
Figure 6. Logistic regression model for arrival (left) and departure (right) in C2 ice cream shop.  

  
Figure 7. Logistic regression model for arrival (left) and departure (right) in F1 bakery. 

 

Table 3. Logistic Regression Parameters. 

  Accuracy β0 β1 β2 β3 β4 β5 β6 β7 

C2 Arrival 0.98 -27.1983 0.0447 N/A 
Departure 0.97 34.6877 -0.0249 

F1 
Arrival 0.94 -11.9311 0.0254 N/A 

Departure 0.88 13.7769 -0.0125 
Extra On 0.84 -0.8309 -0.4829 0.4967 -0.2586 0.4967 -0.1171 -0.4829 -0.4829 

 

Figure 8. Extra lights on frequency for day of week in F1 
bakery (2018). 
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function is expressed in Eq. 3, where 𝑝𝑝 represents the 
probability of occupant present or extra lights on; 𝑒𝑒 is 
the natural log base; 𝛽𝛽 is the regression intercept and 
coefficients; 𝑚𝑚  refers to the number of logistic 
regression independent variables. The accuracy of all 
the models are above 84%. Table 4 lists the probability 
of extra lights on for day of week in building F1.  

𝑝𝑝 = 1
1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+⋯+𝛽𝛽𝑚𝑚𝑥𝑥𝑚𝑚) (3) 

Table 4. Probability of Extra Lights On for Day of Week 
from Logistic Regression. 

 Mon Tue Wed Thu Fri Sat Sun 
Proba
bility 0.21 0.42 0.25 0.42 0.28 0.21 0.21 

Figure 6 and Figure 7 visualize the training data 
points and the logistic regression models for arrival and 
departure in C2 and F1. Based on our observations, 
occupants will arrive before 12 pm and leave after 12 
pm. Hence, the arrival models are trained with data 
points before 12 pm and the departure models with 
points after 12 pm. For the ice cream shop departure 
model, people tend to leave very late. To increase the 
prediction accuracy, we used data after 6 pm to train this 
model.  

2.3 Implement in Modelica 
The implementation of the presence model and the extra 
lighting status model is adapted from 
Buildings.Occupants.Office.Lighting.Hunt1979Light in 
Modelica Buildings library (Wetter et al. 2014). The 
model is implemented as a stochastic simulation model. 
Every two minutes, a binary variable generator will 
randomly generate a binary number. The probability of 
this number being 1 equals the calculated probability of 
the occupant being present at that time of day based on 
the logistic regression model. Similarly, in the extra 
light status model, the probability of the random number 
being 1 equals the probability of the extra light being on 
at the simulated day of week.  

Figure 9 depicts the layout of the two-stage lighting 
power prediction model for F1. The presence models 
generate binary signals which will be multiplied with 
the nominal power of each stage. The nominal powers 
are the calculated mean values of the lighting power in 
each stage. The sum of the lighting power of all stages 
are then compared with the actual lighting power data to 
validate the performance of the stochastic simulation 
models. An assumption is made in this model that the 
extra light will only be on when both of the following 
conditions are satisfied: (1) The extra light should be on 
for that day of week; (2) There are occupants in the 
building. The simulation was run for the whole month 
of August 2018 and the time step was set as 10 minutes. 
The actual time step was picked by Dymola to be 2 
minutes due to the stochastic events. 

 
Figure 9. Modelica layout of the two-stage lighting 
power prediction model. 

3 Results and Discussions 
We evaluate both the occupant presence prediction 
performance and the lighting power prediction 
performance in this section. The presence models are 
evaluated with the root mean squared error (RMSE) and 
the coefficient of variation of RMSE (CVRMSE) of the 
probability distribution model. The lighting power 
prediction performance is evaluated with the relative 
error of the peak power and normalized mean bias error 
(NMBE). The error in the lighting power prediction is 
dependent on the presence prediction error as well as the 
error of nominal power estimation.  

ASHRAE Guideline 14-2002 has requirements for 
whole building energy calibration (ASHRAE 2002). 
The smaller the time scale, the more tolerant the criteria. 
For example, the criteria for monthly NMBE is 5%, 
monthly CVRMSE is 15%, and the criteria for hourly 
NMBE is 10%, hourly CVRMSE is 30%. Though only 
the lighting system is calibrated in our work, the 
principle for different time scales should apply.  

3.1 Occupant Presence Prediction 
RMSE represents the standard deviation of the errors 
and CVRMSE is the ratio of the standard deviation to 
the mean of the dependent variable. They both describe 
how concentrated the data is around the line of its best 
fit. Large errors are especially noticed in these metrics. 
The equations for calculating the two metrics are listed 
below. 𝑥𝑥𝑜𝑜,𝑖𝑖  is the original value of the predicted 
variable, 𝑥𝑥𝑓𝑓,𝑖𝑖 is the forecasted value, N is the number of 
total data points. Table 5 lists the RMSE and CVRMSE 
of the occupant and extra lighting status prediction 
models. The CVRMSE for the occupant presence 
models are below 25%. The CVRMSE for extra lighting 
prediction is 125%. This is caused by the imbalance of 
the training data. The probability of the extra lights 
being on is much lower than the probability of them 
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being off. Hence, the mean value 𝑥𝑥𝑜𝑜̅̅ ̅ is very small and 
small errors could cause a large CVRMSE.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑥𝑥𝑓𝑓,𝑖𝑖 − 𝑥𝑥𝑜𝑜,𝑖𝑖)
2𝑁𝑁

𝑖𝑖=1
𝑁𝑁  (4) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
√1𝑁𝑁∑ (𝑥𝑥𝑓𝑓,𝑖𝑖 − 𝑥𝑥𝑜𝑜,𝑖𝑖)

2𝑁𝑁
𝑖𝑖=1

𝑥𝑥𝑜𝑜̅̅ ̅
 

(5) 

Table 5. RMSE and CVRMSE of Occupant Presence and 
Lighting Status Prediction Results. 

 
C2 F1 

Occupant 
Presence 

Occupant 
Presence 

Extra 
Lights 

RMSE 0.108 0.101 0.153 
CVRMSE 20.9% 25.0% 125% 

Figure 10 and Figure 11 plot the regression model, 
simulated probability distribution and the actual 
probability distribution of arrival and departure in the 
two buildings. From the figure, we see that the simulated 
probability distribution aligns with the regression model 
very well. The actual probability distribution deviates 
from the regression model especially during the 
transitional periods in the middle (e.g., 9 to 11 for C2 
arrival, 17 to 21 for F1 departure). This could have been 
caused by the inappropriate selection of the training data. 
The high accuracy of the classifiers shown in Table 3 is 
partially because more data points are located outside 

the transitional period. The classifier can distinguish 
those points easier. Another reason could be that only 
one feature is used to predict occupant presence. This 
could have limited the shape of the logistic regression 
model to further fit the actual curve. More features 
should be explored in the future. 

Table 6 compares the probability of extra lights on in 
F1 calculated from the simulated results and the actual 
data. From the table, we see that the simulated and actual 
results deviate on Tuesday and Wednesday. For other 
days, the simulation results reproduced the actual 
probability well.  

Table 6. Comparison of Simulated and Actual Probability 
of Extra Lights On for Day of Week. 

 Mon Tue Wed Thu Fri Sat Sun 
Simula

ted 0 0.29 0.29 0.14 0.29 0.29 0.14 

Actual 0 0 0 0.14 0.29 0.29 0.14 

3.2 Lighting Power Prediction 
To evaluate the lighting power prediction performance 
of the models, peak power prediction relative error and 
NMBE are calculated on a monthly, weekly and daily 
basis. In this way, the lighting power prediction 
performance is evaluated for different time scales. As 
the models in this paper are mainly designed for shorter-
time demand response scenarios, annual energy 
consumption is out of scope. Table 7 summarizes the 

  
Figure 10. Arrival and departure time probability distribution (C2: ice cream shop). 

  
Figure 11. Arrival and departure time probability distribution (F1: bakery). 
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peak power prediction accuracy. For C2, the errors are 
all below 2.36%. For F1, which is two-stage prediction, 
the errors are larger, but all stay below 6.9%. Hence, the 
multi-stage method performs well in predicting peak 
power. 

Table 7. Peak Power Prediction Accuracy. 

 
Monthly 

Peak 
Power 

Weekly Peak 
Power 

Daily Peak 
Power 

C2 2.36% 2.36%~2.36% 
(avg: 2.36%) 

0.73%~2.36% 
(avg: 1.99%) 

F1 6.90% 2.15%~6.90% 
(avg: 5.34%) 

1.05%~6.90% 
(avg: 2.42%) 

To further evaluate the fitness of the power curve to 
the real power curve, the NMBE metric is adopted, 
which describes the average bias in the model. NMBE 
is determined with Eq. 6. By definition, it is the sum of 
error over the sum of the actual values. This metric 
evaluates the fitness of the model over the whole 
simulation horizon.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
∑ (𝑥𝑥𝑓𝑓,𝑖𝑖 − 𝑥𝑥𝑜𝑜,𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑁𝑁 × 𝑥𝑥𝑜𝑜̅̅ ̅
 (6) 

Table 8 summarizes the daily, weekly and monthly 
NMBE of the lighting power. The lighting power 
obtained by multiplying the ground truth occupancy 
data with nominal power is set as the baseline for better 
comparison. From the table, the two-stage prediction 
generally has larger errors than the single-stage model. 
For the single-stage lighting power (C2), the monthly, 
weekly and daily NMBE are all within 5%, which 
indicates a high accuracy for power demand predictions. 
For the two-stage lighting power (F1), the monthly and 
weekly average errors are within 10%, which is still 
acceptable. However, we see a big deviation in the daily 
NMBE, and this leads to a high average value for daily 
NMBE. This high deviation could have been caused by 
an uncommon data record on Aug. 19 (see Figure 12) 
when the lights are only on for a short time period but 
the model simulated it just as usual.  

Table 8. NMBE of Lighting Power Prediction. 

 Baseline Model 
Monthly 
NMBE 

C2 0.061% 3.92% 
F1 -0.55% 8.28% 

Weekly 
NMBE 

C2 -0.27%~0.44% 
(avg: 0.060%) 

-0.25%~9.84% 
(avg: 4.07%) 

F1 -2.84%~1.30% 
(avg: -0.68) 

0.33%~20.4% 
(avg: 7.92%) 

Daily 
NMBE 

C2 -0.56%~0.72% 
(avg: 0.057%) 

-2.59%~23.72% 
(avg: 4.03%) 

F1 -12.9%~50.9% 
(avg: 0.39%) 

-21.6%~807% 
(avg: 44.1%) 

Additionally, as the models are simulated in a 
stochastic manner and the occupant presence was 
determined every 2 minutes, we see an obvious 
oscillation in lighting power in Figure 12. This feature 
of the model leads to that the longer the simulation time, 
the closer the expectation of the simulation results will 
be to the actual data. This explains why the model shows 
a better performance concerning monthly NMBE. 
However, short-term accuracy of the model still needs 
some improvement. 

4 Conclusion 
This paper proposed a methodology for occupant 
presence learning and reproducing based on lighting 
power metering data. The method was validated against 
real data. The results show that the proposed multi-stage 
lighting power prediction method can predict daily peak 
power with 2.42% relative error. The monthly and 
weekly NMBE of lighting power are on average below 
8.28%.  

Through the training and validation process of this 
work, we found that logistic regression models are 
sensitive to the quality of the training data. Ideally, the 
dataset should be more focused on the transitional 
region (i.e., where the value turns from 0 to 1 or vice 
versa) of the model and the two classes should be well 
balanced. Further, increasing the number of independent 
features should help improve the fitness of the 
probability model. The stochastic simulation results 
show that stochastic models can be very accurate for 

Figure 12. Monthly predicted and actual lighting power in F1 bakery. 

73



80 10.3384/ECP20169         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2020   MARCH 23-25, BOULDER, CO, USA

long-term predictions. However, they cannot predict 
uncommon events, and this can lead to large short-term 
prediction errors.  

This work has the limitation of not having the ground 
truth data for occupant presence. The presence 
generated from lighting power can be delayed when 
people arrived and did not turn the lights on. This can be 
cross validated with other appliance usage data in the 
future. In the best-case scenario, occupant surveys 
should be conducted to know their preferences and 
habits, and occupant sensors should be installed.  
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