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Abstract
Data centers have numerous opportunities to participate in
demand response programs considering their large capac-
ities, flexible working environments and work loads, re-
dundant design and operation, etc. Frequency regulation,
as one service provided in demand response programs, can
also benefits the data centers. This paper aims to develop a
real-time multi-market optimization framework for a data
center without storage systems to maximize their benefits
from participating in both the energy market and the reg-
ulation market. Then a case study is conducted to numer-
ically investigate the optimal bids at each hour by consid-
ering the energy cost, demand costs, and regulation rev-
enues using a virtual data center located in PJM. Simula-
tion results show that the proposed multi-market optimiza-
tion framework can help data centers maintain minimum
costs by getting maximum regulation revenues while sat-
isfying energy and demand goals.
Keywords: Frequency Regulation, Data Center, Multi-
market Optimization

1 Introduction
Data centers have numerous opportunities to participate
in demand response (DR) programs considering their
large energy capacities, flexible working environments
and work loads, redundant design and operation, etc. For
example, researches have shown that an optimized 30 MW
data center is comparable to 7 MWh large-scale storage in
providing DR service for the power grid (Wierman et al.,
2014). Besides, some delay-tolerant data centers are al-
lowed to have flexible work environment and workloads.
What’s more, the redundant design in data centers to meet
reliability standards in order to guarantee their uptime and
performance (Standards et al., 2005) can provide extra po-
tentials to DR-related controls.

Frequency regulation (FR), as one type of DR, is an
ancillary service that provides continuous, rapid, and au-
tomatic corrections for changes in electricity generation
or use on a second-to-second basis in order to maintain
the system frequency at its nominal value (e.g., 60 Hz in
U.S.). Typically, FR resources are generators. FR uses
certain amount of generators (e.g., about 1% of total gen-
eration) to continuously track the demand variations. The

frequency must be strictly maintained within a very nar-
row range in order to comply with the control performance
standards and the balancing authority area control error
limit reliability criteria. Besides generators, fast-ramping
demand side resources (DSRs) in buildings can also pro-
vide FR service to the grid by harnessing the demand flex-
ibility provided by the modulating loads. Typical modu-
lating loads on building side include energy storage sys-
tems such as flywheels, batteries and compressed-air en-
ergy system, electric boilers and heaters, and independent
systems with variable frequency drivers (VFDs).

Recently, awareness of these potentials has drawn at-
tention to the capabilities of data centers to participate in
DR programs. A survey conducted by the Lawrence Liv-
ermore National Laboratory in 2015 shows that about 50%
of the participating data centers have interest in smart pric-
ing demand side programs, such as load shedding to avoid
peak demand (Bates et al., 2015). However, data centers
are reluctant to participate in fast demand response pro-
grams such as providing frequency regulation (FR) in an-
cillary service market, for multiple reasons. One reported
concern is that data centers are still learning the process
of providing FR and that providing grid services on such a
fast timescale can be “outside of their visibility or control"
(Bates et al., 2015). This concern is well-founded con-
sidering that these programs provide novel and relatively
unexplored territory from the point of view of traditional
data center control and operations.

This paper aims to explore data centers’ ability of pro-
viding frequency regulation service to grids and maximize
their benefits from participating regulation market and en-
ergy market as a whole. First, a synergistic control strat-
egy together with a new regulation flexibility factor is pro-
posed to enable the provision of regulation services in data
center. Then, a real-time optimization framework is devel-
oped to maximize the data centers’ benefits from partici-
pating in both the regulation market and the energy mar-
ket. In Section 4, the optimization framework is evaluated
in a Modelica-based environment for typical days in Jan-
uary and July.
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2 Synergistic Strategy for Frequency
Regulation

In this section, we propose a synergistic control strategy
for data centers to provide FR service. This strategy is
composed of four major parts. The first one is Baseline
Routine, which predicts the baseline power usage when
the data center provides no FR. The second one is Bidding
Capacity, which is the capacity bid that the data center
submits to the electrical market. The third one is Server
Power Management, where an aggregator is adopted to
represent the aggregated performance of servers in the
data center. The clock frequency of the aggregator can
be directly changed by a Proportional-Integral-Derivative
(PID) controller in order to follow the regulation sig-
nal. Based on that, the desired frequencies for individ-
ual servers will be determined by a set of predefined as-
signment rules and then be propagated to all servers. The
forth one is Cooling Power Management, which adjusts
the chilled water supply temperature (CHWST) setpoint
to respond to the regulation signal.

Figure 1 shows the workflow of the proposed synergis-
tic control strategy. The Baseline Routine outputs the pre-
diction of the overall power profile for the data center Pbas
when no FR service is provided. In this paper, the predic-
tion is performed using detailed energy models, although
many other methods such as machine learning techniques
can also be used. The detailed energy models and baseline
settings can be referred to Section 4.1. The Bidding Ca-
pacity is a module that can calculate the optimal capacity
bid for the data center at each time step, and output raw
regulation power ∆Preg,raw based on the optimal capac-
ity bid and received regulation signal r from the electrical
market. Then, the reference power Pre f for the data center
to track is the summation of the predicted baseline power
Pbas together with the raw regulation power ∆Preg,raw.

The Server Power Management first determines the
number of required active servers in the aggregator Nact

based on the predicted workload λ ′
in the next time step

(e.g., one hour ahead). Then a closed-loop control using a
PID controller is utilized to minimize the error between
the measured total power usage Pmea and the reference
power Pre f by adjusting the aggregated frequency of the
server aggregator. Meanwhile, the Cooling Power Man-
agement applies an open-loop control to adjust the cooling
system power usage by resetting the CHWST setpoint in
response to the received regulation signal r.

The server aggregator receives the aggregated fre-
quency fagg and the required number of active servers Nact
from the FR controller. Assuming there are N0 number of
servers in the data center, the server aggregator then calcu-
lates the CPU frequency fi for an individual server i based
on predefined assignment rules. The cooling system re-
ceives CHWST setpoint from the FR controller. Both the
IT system and the cooling system respond in such a way
that their total power Pmea is adjusted to track the reference
power Pre f .

For the aggregator, there are several assignment rules to
control the individual server’s frequency (Li et al., 2013;
Wang et al., 2019). We can also represent the aggregated
server power Pservers of all servers under an assignment
rule using a simplified model (Li et al., 2013) and this ap-
proach is adopted by this paper and detailed in Section 2.1.
For the FR controller, more details are described in the rest
of this section.

2.1 Server Power Management
The servers in the data center can be considered as an ag-
gregator, which is characterized by the active number of
servers Na and the aggregated frequency f . These two pa-
rameters can be determined based on the regulation signal
r and incoming workload λ . The aggregrated frequency
can then be distributed to the single servers as fi using
a predefined assignment algorithm. The relationship be-
tween Na, f and r, λ is detailed in the rest of this section.

2.1.1 Server Aggregator Model
The IT equipment, especially the servers, are modelled as
an aggregator, which can predict the total IT power us-
age and the server response time based on CPU frequency,
workload arrival rate, and number of active servers (Li
et al., 2013). Details are shown as follows.

Pservers(t)= λ (t)
r

∑
0

bi f (t)i+
s

∑
0

c jNa(t) j,0≤ i≤ r,0≤ j ≤ s

(1)
where bi, c j are constant coefficients that can be obtained
from curve fitting techniques, λ (t) is the total arrival rate,
f is the aggregated relative frequency, ranging from 0 to
1, and Na is the active number of servers at current time. f
and Na can be optimally determined in order to minimize
cost.

Here we use the average response time to quantify the
service quality of a data center. The workloads are mod-
eled as GI/G/m queues, which assumes a general distribu-
tion with independent arrival times and a general distribu-
tion of service times. The total time that a job spends in
the queuing system is known as response time. The re-
sponse time usually consists of two parts: waiting time,
that is, the time that a job spends in a queue waiting to
be serviced; and service time, that is, the time that a job
needs to be executed. The average response time model
is adopted from (Bolch et al., 2006). Details are shown as
follows.

µ(t) = k f (t) (2)

ts =
1

µ(t)
(3)

ρ(t) =
λ (t)

Na(t)µ(t)
,0 ≤ ρ(t)≤ 1 (4)

Pm =

{ρ(t)m+ρ(t)
2 , ρ(t)≥ 0.7

ρ(t)
Na(t)+1

2 , ρ(t)< 0.7
(5)
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Figure 1. Data center frequency regulation control

tw =
C2

A +C2
B

2Na(t)
Pm

µ(t)(1−ρ(t))
(6)

tr = ts + tw (7)

In the above equations, µ is the mean service rate, k
is a constant parameter, assuming the service rate is pro-
portional to the frequency, ρ is the average utilization of
the server, representing the fraction of occupied time, Pm
is approximated probability that an arriving job is queued,
CA and CB are constant coefficients reflecting the varia-
tions of the inter-arrival times and request sizes, tr, ts, and
tw are the average response time, service time and waiting
time for the aggregator respectively.

2.1.2 Number of Active Servers

The number of servers in a data center needs to satisfy the
following condition in order to ensure the stability of the
queue. This condition means that the service rate in the
data center should be greater than the arrival rate.

Na(t)µ(t)> λ (t) (8)

Under design conditions, to guarantee reliability, a scal-
ing factor γ as defined in Eq.(9) is utilized here to de-
scribe the design redundancy of the servers. The γ is set
to greater than 1. If γ = 1, it means all the CPU clock
frequencies need to set at maximum level just to serve the
average workload, which limits the potential of FR. The γ
is described as

γ =
µ0N0

λ0
, (9)

where µ0 is the nominal service rate of a single server, N0
is the nominal number of servers in a data center room,
and λ0 is the nominal arrival rate to be served by the data
center.

When using a server aggregator model as described in
Eq. (1), the γ can then be rewritten as:

γ =
kN0

λ0
=

kNa(t)
λmean(t)

, (10)

where k is a constant parameter, assuming the service rate
is proportional to the aggregated frequency, Na is the num-
ber of active servers at current time step, and λmean is the
mean arrival rate at the current time step.

The number of active servers is calculated at an interval
of 1 hour because the servers have relatively long wakeup
time. The detailed formula is shown in Eq. (11), where
the operator �x� is the ceiling function which yields the
smallest integer greater or equal to x.

Na(t) = �γλmean(t)
k

� (11)

By adding a FR flexibility factor β during operation, we
can determine the number of active servers based on the
predicted coming arrival rate, as shown in Eq. (12). The
greater β is, the more servers are activated for a specific
workload.

Na(t) = �β
γλmean(t)

k
�,Na(t) ∈ [0,N0] (12)

2.1.3 Frequency Control
The aggregated frequency fagg is controlled by a PID con-
troller to track the reference power Pre f calculated from
the electrical market. The reference power Preg is calcu-
lated as

∆Preg,raw(t) = r(t)Creg (13)
Pre f (t) = Pbas(t)+∆Preg,raw(t) (14)

where ∆Preg,raw is the raw power signal and Creg is the reg-
ulation capacity that the data center bids in the market.

The frequency fagg is then determined by the PID con-
troller as follows.

fagg(t)=Kpe(t)+Ki

∫ t

0
e(x)dx+Kd

de(t)
dt

, fagg(t)∈ [ fmin, fmax]

(15)
e(t) = Pre f (t)−Pmea(t) (16)

In the above equations, Kp, Ki, and Kd denote the coef-
ficients for the term P, I and D, respectively. e is the error
between the reference power Pre f and the measured power
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Pmea. The maximum aggregated frequency is 1, while the
minimum frequency varies based on the number of active
servers due to the constraints of Quality of Service (QoS).
Details on how to determine fmin are described in Sec-
tion 2.1.4.

2.1.4 Minimum Aggregate Frequency

Using a service response time model shown in Eq. (2) and
Eq. (7), we know that the response time of the servers de-
pends on the aggregated frequency. If the frequency is
low, then it takes relatively long time for the servers to re-
spond to the arrival workload, which means the QoS of the
data center is compromised. To enable FR and guarantee
the QoS, the aggregated frequency should meet a mini-
mum value. The minimum can be obtained by solving the
following optimization problem.

min f (ρ(t)) =
λ (t)

kNa(t)ρ(t)
s.t. 0 ≤ ρ(t)≤ 1

tr(t)≤ tr,u

(17)

where ρ(t) is the utilization rate as defined in Eq. (4), tr(t)
is the service response time as calculated in Eq. (7) and tu
is the maximum response time allowed by the data center.

Rearranging Eq. (2) to Eq. (7), we can get the response
time tr(t) as a function of the utilization rate ρ(t) as fol-
lows.

tr(ρ(t)) =
ρ(t)
λ (t)

[Na(t)+
C2

A +C2
B

2(1−ρ(t))
Pm(ρ(t))] (18)

It is easy to show that

dtr(ρ)
dρ

> 0 (19)

Thus, the above-mentioned optimization problem can
be solved at each time step as:

fmin(t) =
λ (t)

kNa(t)ρ∗(t)
(20)

where ρ∗(t) is the optimal utilization rate, and ρ∗(t)
should satisfy the nonlinear relationship shown as:

tr(ρ∗(t))− tu = 0 (21)

2.2 Cooling Power Management
The cooling system power is managed by resetting the
chilled water supply temperature. The regulation sig-
nal from the electrical market is directly used to change
the chilled water supply temperature setpoint Tchws,set by
Eq. (22).

Tchws,set(t) = Tchws(t)−∆Tr(t) (22)

where Tchws is the chilled water temperature at current time
step, ∆T is the user defined regulation range for the tem-
perature, and varies based on the design supply tempera-
ture range of chillers. Here we set it to 2 °C. The negative
sign at the right term means when regulation up is needed,
the temperature setpoint is reduced, and vice versa.

3 Multi-market Optimization Frame-
work

A real-time optimization framework is applied for opti-
mizing the operation of the data center without thermal
storage system in the presence of real-time (or day-ahead)
energy prices, peak demand charges, and frequency regu-
lation revenue. For each optimization time step, the over-
all objective can be described as:

min J(Creg) = Ecost +Dcost −Rrevenue

s.t. 0 ≤Creg(t)≤Creg,max(t)
tr(t)≤ tr,u
S(Creg)≥ Sl

(23)

where Creg is the design variable, representing regulation
capacity bid at each hour, Creg,max is the maximum capac-
ity the data center can provide for regulation, tr is the re-
sponse time of the data center service, tr,u is the allowable
upper limit of the response time, S is the regulation per-
formance score defined by PJM as shown in Section 6.1,
and Sl is the lowest allowable performance score by PJM
to participate in regulation market.

The cost function J has three terms: energy cost Ecost ,
demand cost Dcost and regulation revenue Rrevenue. The
energy cost is calculated by Eq. (24).

Ecost =
∫ t+∆t

t
pem(t)PDC(t)dt (24)

where pem is the real-time price signals for energy use at
time t, PDC is the total power consumption for the data
center at time t. The calculation period starts from time t
and ends at t +∆t, where ∆t is the optimization step, and
is set to 1 hour in this study.

The electric demand during the current optimization
horizon is penalized by the demand price pdm as shown
in Eq. (25).

Dcost = pdm ·max((Pdm −Pdm,lim),0) (25)

where pdm is the demand price, Pdm is the power demand
calculated as the average power for each 30-min interval,
and Pdm,lim is the limit of required demand. This function
means if the demand in current step exceeds a predefined
demand value, then the optimization cost function is pe-
nalized by the demand difference. Otherwise, no penal-
ization is applied. Note that pdm and Pdm are both utility
specific, and may vary from this definition.

The revenues from regulation service is computed as
follows.

9
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Rrevenue =
∫ t+∆t

t
prm(t)Creg(t)dt (26)

where prm is the real-time price signal from the regulation
market, and Creg(t) is the regulation capacity bid for each
time step.

The price signals such as pem and prm need to be pre-
dicted one optimization step ahead, e.g. 1 hour in this
study. Many researches have been conducted for this pur-
pose. In this paper, historical prices of these two electrical
markets are used, which means the hourly ahead prices
are assumed to be perfectly predicted. The demand limit
Pdm,lim can also be predefined by the data center opera-
tors based on historical operation conditions. The maxi-
mum regulation capacity at each optimization step is set
to 798.2 kW (20% of the nominal power). Note this max-
imum regulation capacity setting is not the feasible capac-
ity the data center can provide at each hour, because the
regulation capacity is related to data center operational
conditions such as arrival rate, and weather conditions
etc. This simplification has limited influence on the op-
timization results when the lower limit of performance
score sl is set to a high value, because if the data cen-
ter makes a bid that exceeds its capacity, it cannot track
the reference signal, thus the regulation performance will
be low. By setting sl to a high value can help data cen-
ter make a reasonable bids when the regulation capacity is
hard to predict. The optimization problem is solved using
the pattern search algorithm in the optimization engine,
GenOpt (Wetter et al., 2001).

4 Case Study
A data center as shown in Figure 2 is used to investigate
the benefits from participating in different electrical mar-
kets. The data center is considered as a price taker only.
This case study investigates the maximum benefits that
data centers can obtain from both the real-time energy
market and the regulation market in PJM. For the regu-
lation service, only dynamic regulation is studied here,
because its price is usually much higher than traditional
regulation.

4.1 Case Description
The data center is located in Chicago, which is in
ASHRAE Climate Zone 5A and within the PJM market
territory. For the cooling system, there are two chillers and
one integrated waterside economizer providing cooling to
the data center room. This cooling system can operate
in three modes: Free Cooling (FC) mode when only the
WSE is enabled for cooling, Partial Mechanical Cooling
(PMC) mode when the chiller and WSE are both triggered,
and Full Mechanical Cooling (FMC) mode when only the
chiller is activated. There are also two cooling towers,
two constant-speed condenser water pumps, two variable-
speed chilled water pumps, and one variable speed fan.
The cooling system and its control are modelled using
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an open-source equation-based Modelica environment (Fu
et al., 2018, 2019a,c,b).

For the IT system, the design number of servers is 8000.
The design factor γ is set to 1.5 (Li et al., 2013). The total
nominal electrical load is about 2700 kW. The calibrated
coefficients for Eq. (1) are b0 = 0.0154, b1 = 1.5837,
b2 = 0.1373, c0 =−22.3540 and c1 = 121.0212 using the
method mentioned in Ref. (Li et al., 2013). When not pro-
viding FR, the server aggregator operates at a frequency
of 0.8 with a regulation flexibility factor of 1.0, and the
CHWST setpoint is set to 8 °C. For the internet data cen-
ter, the constants CA and CB are set to 1 as in Ref. (Li et al.,
2013).

For the multi-market optimization, all the settings are
the same as the baseline except that an additional FR con-
troller as designed in Section 2 is used to provide regula-
tion service for the grids by adjusting the CPU frequency
and CHWST setpoint. The FR flexibility factor is set to
1.1 when providing regulation services. The QoS when
providing regulation services is guaranteed by constrain-
ing the average response time of the data center service to
6 ms. The lower limit of the performance score in PJM to
disqualify a regulation resource is 0.4 (LLC, 2019). Here
we set it to a higher value, 0.9. The real-time optimiza-
tion is performed at a one-hour interval for 2 days in both
January (1/20 ∼ 1/21) (when cooling system operates at
FC mode) and July (7/20 ∼ 7/21) (when cooling system
operates at FMC mode).

The price signals of the real-time energy market and
the regulation service market in January and July 2018
are posted in Ref. (PJM, 2019), and the price during the
optimization period is plotted as shown in Figure 4. An
example of one-hour historical RegD signal is plotted in
Figure 3. A real-time web service in Wikipedia (Wang
et al., 2019) is used as the workload arrival profile during
optimization, which is shown in Figure 5.

4.2 Results and Discussions
Table 1 compares the total cost of the data center in terms
of baseline operation and multi-market optimization. The
baseline system is denoted as Base, and the multi-market
optimization is denoted as OPT . In both January and July,
the data center without energy storage systems, using the
proposed optimization framework, can benefit from par-
ticipating in both energy market and regulation market. In
the two days considered, OPT can save $123.6 in July,
while the saving is $24.8 in January.

The savings mainly come from the revenues in the reg-
ulation market, and the cost for energy use and demand
charge are almost the same in the Base and OPT . Be-
cause the sum of the RegD signal over a long time pe-
riod (e.g. 1 hour) is almost 0, providing regulation service
in the OPT leads to the similar energy use, thus similar
energy cost compared with the Base where no regulation
service is provided. By utilizing the demand cost defined
in Eq. (25), the data center can provide regulation service
without increasing monthly demand, thus no extra demand
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Table 1. Multi-market optimization of data centers

Costs January July

Base OPT Base OPT

Energy Cost ($) 1043.3 1042.9 1591.4 1590.6
Demand Cost ($) 10459.3 10457.5 12063.9 12062.8

Regulation Revenue ($) 22.6 121.7
Total Cost ($) 11502.6 11477.8 13655.3 13531.7

Total Savings ($) 24.8 123.6
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charge would be added to utility bills. The revenue from
July is much higher than that in January because the price
for dynamic regulation (RegD) resources is higher in July.
As shown in Figure 4, during the studied two days, the
average price from regulation market in July is about 21
$/MW, while that in January is only about 5.8 $/MW.

Figure 6 shows the hourly capacity bids in 1/21 and
7/21. The demand for each 30 minutes is denoted as the
thin solid line. The demand limit used for demand cost
as shown in Eq. (25) is denoted as the dashed line. The
optimal capacity bid at each hour is denoted as the shaded
area. At non-peak hours (e.g., 3:00 - 6:00), the optimal
bid is mainly influenced by the price from energy market,
price from regulation market and detailed shape of RegD
signal. Because the demand is lower than the demand
limit, the tradeoff between the energy cost and revenues
from regulation market determines the optimal bid. The
energy cost is highly influenced by the energy use, which
is determined by the detailed shape of the RegD signal. If
the sum of the RegD signal is larger than 0, then more en-
ergy would be consumed when providing frequency reg-
ulation service, thus the energy cost would increase. Al-
though the energy cost increases in this case, the data cen-
ter can get revenues from regulation market. If the sum of
the RegD signal is no larger than 0, then at that hour, the
data center can bid at their maximum capacity.

At peak hours (e.g., 12:00 - 16:00), the optimal bid is
mostly influenced by the demand limit and the RegD sig-
nal. Figure 6 shows that at these hours, the bid is small so
that the demand cannot exceed the required demand limit
to avoid demand penalty. At 13:00, the bid is about 69
kW, but it is only about 5 kW at 14:00. The difference is
caused by the detailed shapes of the RegD signals in these
two hours. At 13:00, the sum of the RegD signal in first
30 minutes is slightly greater than 0, but in the second 30
minutes it is much smaller than 0. This means that reg-
ulation capacity bid in this hour can increase the demand
in the first 30 minutes, but the demand in the second 30
minutes can be decreased compared with the same time
in the baseline system. Therefore, at this hour, the data
center can bid a large capacity as long as the demand in
the first 30 minutes will not exceed the demand limit. The
same situation happens at 14:00 but with a large sum of
RegD signal at first 30 minutes. Also because the power
at 14:00 is much closer to the demand limit, the data center
can only bid a small capacity at this hour.

In summary, the proposed real-time optimization
framework can help the data center without energy storage
system harness the benefits from the energy market and
the regulation market. However, the benefits are insignif-
icant compared with the large baseline power in data cen-
ters. One of the reason is that data centers without energy
storage system are difficult to limit their power demand
during FR service, which contributes to a large portion of
the utility bill. In the future, we will consider retrofit strat-
egy (e.g., installing thermal storage energy system) in the
data center to limit the power demand to maximize the

benefit from the multi-markets

5 Conclusions
This paper developed a real-time multi-market optimiza-
tion framework for the data center without storage systems
to maximize their benefits from participating in both en-
ergy market and regulation market. Then, a case study
was conducted to numerically investigate the optimal bids
at each hour by considering the energy cost, demand costs
and regulation revenues using a virtual data center located
in PJM. Simulation results shows that using the proposed
multi-market optimization framework can minimize the
operational cost. Compared with the baseline system, pro-
viding frequency regulation service over the considered
two days can save $24.8 in January and $123.6 in July.

6 Appendix
6.1 FR Performance Score
In the PJM market, new resources aiming to enter the reg-
ulation market need to pass an initial test by obtaining at
least 0.75 for a defined performance score. The initial test
signals of RegA and RegD are available at (PJM, 2019).
The performance score is calculated as a composite score
of accuracy, delay and precision, which are shown below
(LLC, 2019).

csig,res =
COV (reg,res)

σregσres
(27)

Saccuracy = max
δ=0−5 min

(creg,res(δ )) (28)

Sdelay =

∣∣∣∣
5 min−δ ∗

5 min

∣∣∣∣ (29)

Sprecision = 1− 1
n ∑

∣∣∣∣
res− reg

reg

∣∣∣∣ (30)

S =
Saccuracy +Sdelay +Sprecision

3
(31)

In the above equations, reg represents the regulation
signal the DSRs receive from the electrical markets, and
res represents the response signal the DSRs generate after
control actions. c, COV and σ are the correlation coeffi-
cient, covariance, standard deviation of these two signals.
In PJM, the response signal res is recalculated with a time
shift δ ranging from 0 to 5 minutes in an increment of 10
seconds, which leads to 31 response signals res(δ ). The
accuracy score Saccuracy is the maximum correlation coef-
ficient c between reg and res(δ ). The delay score Sdelay is
calculated based on the delay time δ ∗ when the maximum
accuracy score is obtained using Eq. (29). The precision
score Sprecision is defined as the relative difference between
regulation signal and response signal, where n is the num-
ber of samples in the hour, and reg is the hourly average
regulation signal. The final performance score S in that
hour is calculated as the weighted average of the three in-
dividual scores.
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Figure 6. Optimal hourly regulation capacity bids in 1/21 (top) and 7/21 (bottom)
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