Traceability in the Model-based Design of **Cyber-Physical Systems**

Christian König, Alachew Mengist, Carl Gamble, Jos Höll, Kenneth Lausdahl, Tom Bokhove, Etienne Brosse, Oliver Möller, Adrian Pop

> **Alachew Mengist** The 2nd American Modelica conference September 22-24, 2020

Motivation

- Today's products design are getting more and more complex
- Different engineering disciplines need to work together
- Frequent changes in design requirements
- The different roles in the engineering process are using highly specialized tools
 - Different vendors
 - Open source projects
 - In-house development

Motivation

Current state of the art

- No whole-life-cycle tool support
- Weak or no integration between tools
- Minimal or no traceability between artifacts

Challenges for product design tools

- Difficult to manage change and variability of design
- Difficult to link designs to other lifecycle artifacts
- Difficult to trace and analyze the impact of design changes

Traceability

• Creation and the use of links (or connections)

- Makes it possible to ensure that the requirements are met
- Enables analysis on models such as coverage, impact analysis
- Facilitates documentation of system development (model evolution documentation)

Challenges of Traceability Management

- Development by distributed teams
- Artifacts and links undergo constant change
- Involve multiple stakeholders with different background
- Trace links often manually created or not created at all
- Existing traceability approaches are either limited to
 - A specific domain and problem, or
 - Lack proper specification of traceability link semantics

Key Contribution

- Developing an OSLC tool-chain data integration architecture to link artifacts from different lifecycle tools
- Goal
 - Identify integration scenario for tool integration
 - Develop traceability information model (TIM)
 - Develop a prototype to support that integration scenario (Proof of Concept)
 - Test the prototype with cross domain lifecycle tools

Open Services for Lifecycle Collaboration (OSLC)

- Lifecycle integration based on Web standards
 - Linked Data and
 - RESTful Web Services
- Minimal web-based API allowing workflow integration
- Linked Data approach
 - Built on Resource Description Framework (RDF)
 - Use URIs (Uniform Resource Identifier) as identifiers
 - Use HTTP URIs so that people can discover including links to other URIs

Integration Scenario - INTO-CPS Tool Chain

Traceability Design and Architecture

Traceability Message Format and Ontology

- RDF triples (source, relations, target)
- Generate URIs for RDF Graphs
- JSON supported
- → "Simulation results (source) validates (relations) a requirement (target)"

"A requirement satisfies model design "

prov:used	one entity used another				
	one				
prov:wasAttributedTo	attribution of entities				
prov:wasAssociatedWith	association of activities				
prov:wasGeneratedBy	one entity is generated				
	from another				
prov:wasDerivedFrom	one entity is derived				
	from another				
prov:hadMember	one entity has one or				
	more members				
oslc:elaborates	an entity that elaborates				
	on a requirement				
oslc:satisfies	an entity that satisfies a				
	requirement				
oslc:verifies	an entity that verifies an				
	assumption				
into:doesNotVerify	an entity that does not				
	verify an assumption				
into:violates	an entity that violates an				
	assumption				

Line Follower Robot Pilot Study

RE1: The robot must sense a black line

RE2: The robot must move faster than 5 cm/sec

rd Robot Requirement	ts
< <requirement>></requirement>	< <requirement>></requirement>
R1	R2
id = R1	id = R2
description = The	description = The
robot must sense a	robot must move

Line Follower Robot Pilot Study - Requirements Engineering

Tool Activity

Line Follower Robot Pilot Study - Architectural Modeling

Tool Activity

2020-09-14 14

Alachew Mengist

Line Follower Robot Pilot Study - Co-simulation

Tool Activity

Traceability – Query User Interface

- Search simulation results \rightarrow FMUs and their versions
- Search FMUs \rightarrow related Requirements
- Search users \rightarrow related FMUs, Requirements, simulation results

Project: - C:\Users\ckoenig\into-cps-projects\case-study_line_follower_robot								×
File Edit View Window Help								
MULTI-MODELS	INTO-CPS > Trace Simulation Results							Î
+ 🍾 lfr-3d-OM	Simulations						•	
+ V lfr-3d-rep + V lfr-3d-rep-OM	Simulation Time		Result URI					
+ 💙 lfr-non3d								
+ 🌱 lfr-non3d-new	2017-1-1-	-21-01	Entity. output	simulationResults- ts.csv0014	(2)	C List simulation sources		
+ 🏆 lfr-non3d-OM		Used File		URI		Hash		
+ 🌱 lfr-non3d-rep								
+ Ymm-freitagTest3		fmus/Controller.FMU		Entity.fmu-controller.fmu0010		0010		
SYSML								
+ 🔁 L 🌲 View Traceability Gr	aph	fmus/Body.FMU		Entity.fmu-bodyFMU.fmu0009		008		
* Trace Results		fmus/Sensor.FMU		Entity.sensorFMU0004		0004		
+ 🔄 data (1)	_							
TRACEABILITY - KOPIE		RobotConnections.coe.json		Entity.simulationConfig- robotConnections.coe.json001	4	0014		
+ 🔁 data								
USERMETRICSCRIPTS								Ŧ

Simulation results and files

match (n{type:'simulationResult'})[:Trace{name:"prov:wasGeneratedBy"}]->(m)
return n.uri, m.time, m.type
match({uri:'Entity.<Result_file>'})[:Trace{name:"prov:wasGeneratedBy"}]->
(simulation)[:Trace{name:"prov:used"}](entity)

return entity.uri, entity.path, entity.hash

Conclusions

- Many benefits to integrating modeling tools with other lifecycle tooling
 - Collaborative development involving multiple users
 - Traceability and data consistency across the tool-chain, cross domain queries, enhanced impact analysis
 - Difficult integration problems (e.g. creating artifacts) are handled by the native tool
- OSLC integrations have one-time investment to support core protocols
 - Adding support for specific domains (Change, Quality, etc) becomes light weight
 - Loosely coupled tool integration

Conclusions

- Pros
 - Open Technologies (Using Open Web Standards JSON, RDF, OSLC etc...)
 - Reduce data integration costs, increase flexibility
 - Scalability
- Cons
 - Cypher query language demands expert users to manually enter queries to search the traceability database
 - Understanding of the underlying structure
 - No dedicated error handling if no connection to the traceability daemon is available.

www.liu.se

