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Increasing Need for Multidisciplinary
Rotorcraft Modeling c

»Emerging eVTOL (electric Vertical Take-Off and
Landing ) aircraft tightly couple many physical
domains

» Aerodynamics, rotor mechanicst+dynamics, electrical
motor dynamics, control system, power electronics, etfc.

» Many independent rotors for vertical lift and forward
propulsion
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What Makes the eVTOL Problem Difficulte c

» Multiple interacting rotor wakes
» Traditional rotorcraft have few, widely spaced rotors

> Variable RPM rotors

» Most rotorcraft are designed for a constant RPM

> Many reasons: engine constraints/power optimization, avoiding
structural modes, simplifying envelope calculations (e.g., whirl
flutter)

» Electric rotors
» Coupling with electric system requires power supply, thermal,
and efficiency considerations
» Independent rotors

» Under-constrained rotor trim problem (more rotors than trim
objectives)

» Existing analysis tools are insufficient

» Designed for aero-structural analysis of fraditional rotorcraft
(few rotors at fixed RPM)

» Cannot analyze coupled electrical system or variable RPM
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Modelica Enables Easy Coupling of the
Various Physical Domains

» Many components can already be modeled/coupled
with the MSL
» Multibody dynamics and rotor mechanics
» Unigue mechanisms can be modeled
> Various hub topologies and control mechanisms
» Electric motors and electric power systems
» Aircraft guidance and control system

» Aerodynamics need to be separately modeled and
coupled to the blades




The Rotorcraft Aerodynamics Library

(RotorAerolib) c

» Supports modeling rotor aerodynamics
within a Modelica model

» Compliments the MultiBody library of the
Modelica Standard Library

. - . = |:| Rotorferolib
» Confains specialized modeling blocks for: 5 @ yserssuide

» Modeling blade aerodynamics and
transferring forces to blade

» Modeling the rigid or flexible blade with twist

+ |E| Examples
M RotorAerolib_Globals

and cross-sectional mechanical/aerodynamic | Airstation
properties PartialAirStation
> Assembling multiple blades into a rotor ExternalAirStation
» Interfacing the blades with the rotor control M Rotor
system (i.e., swashplate and linkages) M| RotorladeAssembly
» Makes use of open-source DeployStructLib M| RotorBlade

Modelica library for rigid/flexible blades
» Usage examples included
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Blade Aerodynamics Start with Blade
Element Theory (BET) c

»RotorAerolLib.AirStation model calculates the

blade aerodynamic forces
» An AirStation is attached in the Rotorreference csys \A

airfoil coordinate system

» Also connects to the rotor
reference coordinate system to
define geometric/collective
angle

» Multiple AirStations span the
length of the blade to capture
varying air flow speeds

» Ultimately converging on the
asymptotic limit
> Lift coefficients defined as a
quadratic function of a

» Most of this merely sets up
basic fluidic force calculations
and projects the forces into the

= correct coordinate system
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0 = geometric/collective angle
a = angle of attack
¢ = inflow angle



Advanced Opftions Implement Blade Element

Momentum Theory (BEMT) and Other Corrections a

» Global parameters in RotorAerolib. RoforAerolLib_Globals
enable advanced correction factors:

Inflow correction for BEMT:
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Unsteady aerodynamics:
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Noncirculatory unsteady
aerodynamics:
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» Inflow correction affects the inflow airspeed Up

» The unsteady aero terms change the coefficient of lift ;
» The others are factors on the blade lift AL

»Some of these terms may significantly increase

= computational cost
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Quadcopter Example <«

» Couples rotordynamics, multibody dynamics,
lifting line aerodynamics, motor electrodynamics

> Rigid rofors with all but unsteady aerodynamic
correction factors

» Motors are individually voltage-controlled
» Constrained max motor speed

» Model starts in hover with rotors spun up to
counter gravity

Altitude set point starts at zero then
stepsto5m
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Analysis of Aircraft Whirl Flutter

» Aeroelastic instability caused by the interaction of the aircraft
structural dynamics, rotor gyroscopic forces, and rotor
aerodynamics

» Initial studies performed in the 60’s
» Houbolt and Reed, Bland and Bennet
» Driven by early aircraft crashes of Lockheed Electra

» Interest today in tiltrotor and other non-conventional
aircraft

» Directly impacts the aircraft flight envelope

Credit: NASA

https://www.youtube.com/watch?v=j6Q5ggtV-y8
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https://www.youtube.com/watch?v=j6Q5ggtV-y8

Bland and Bennett Propeller Model Use
for Whirl Flutter Analysis «

> Modelica model of
Blond and Bennett
propeller
> Linearized blade ftwist  Pitch and yaw
> Lift-curve slope stiffened joints

(represent wing
5.7/rad stiffness/damping)

» Unsteady
aerodynamic effects

included
» No in-plane drag
» 6 airstations per blade Pylon

> Additional airstations
showed minimal
change in results

»Goalis to find the

v\Shaft
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Bland and Bennett Validation Data «

» Wind-tunnel whirl flutter measurements taken
by Bland and Benneftt in 1963 at NASA LaRC
Transonic Dynamics Tunnel

»Flutter boundary was determined for various
blade pitch angles (B) in a parameter space of
reduced velocity/required damping for stability

Source: Bland and Bennett Source: Bland and Bennett

S.R. Bland and Bennett, R.M., “Wind-Tunnel Measurement of Propeller Whirl-Flutter Speeds
< and Static-Stability Derivatives and Comparison with Theory”, NASA TN D-1807, 1963.
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Verification and Validation — Stability Calculations «

»Modelica model is solved with the rotor speed and
aerodynamic forces balanced at initialization

» Linearized system extracted at t=0 sec

»Eigenvalues of linearized system extracted to obtain
frequency and damping at an operating point
> Unstable System (positive real part): X
> Stable System (negative real part): O

»Parametric study explored stability within the
parameter space of reduced velocity and structural
damping

» Varied damping of springs at base of pylon (i.e.,
effective wing modal damping) and freestream velocity

» Performed for a range of fixed blade collectives
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Damping, 2¢

Whirl Flutter Stability Boundaries (1/2)

»Modelica whirl flutter boundary compared 1o an
analytical Houbolt-Reed formulation and measured
stability boundary data

»Predictions show good agreement with
experimental data and between analysis types

despite different formulations
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Damping, 2¢

Whirl Flutter Stability Boundaries (2/2)

» At increased blade pitch angles, the Modelica
predictions move closer to the experimental
results than the analytical boundary

» Reduced conservatism
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Conclusions s

»RoforAerolib enables wide ranging design
studies of complex multiphysics phenomena for
rotorcraft

> Available on GitHub
> hitps://aithub.com/ATAENngineering/RotorAerolib

»Developed using OpenModelica

» Help ensuring compatibility with other compilers
would be much appreciated

» Bug reports and suggestions are always welcome
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https://github.com/ATAEngineering/RotorAeroLib
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