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Motivation

Modelica is an industry standard to model hybrid (discrete-continuous)
dynamical systems described by ODEs or DAEs.

A subclass of hybrid systems referred to as Filippov systems where
discontinuities appear in the right hand side of the model’s equations.

A Modelica implementation of the Filippov systems without considering
Filippov formalism leads to chattering-Zeno-type deadlocks, which
consists of infinitely many instantaneous switches of the discrete variables
during time domain simulation.

This significantly restrains the performance of the solvers of Modelica
simulation tools and can lead to a simulation halt.

A generalized formulation is required for smooth continuation of
trajectories of Fillippov system models in Modelica tools.
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Objectives

To propose a generic formulation based on Filippov Theory (FT) for the
implementation and direct numerical simulation of Filippov systems with
one sliding surface using Modelica.

To validate the proposed formulation comparing the results with a
Matlab implementation and via simulation in two Modelica tools, namely
OpenModelica and Dymola.
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Filippov Theory

Consider the following switched dynamical system:

ẋ = f(x) =

{
f1(x) when h(x) < 0

f2(x) when h(x) > 0

The state space Rn is split into two regions R1 and R2 separated by a
hyper-surface Σ. Where,

R1 = {x ∈ Rn | h(x) < 0},
R2 = {x ∈ Rn | h(x) > 0},
Σ = {x ∈ Rn | h(x) = 0}.

Filippov convex method: the vector
field on the surface of discontinuity is
a convex combination of the vector
fields in the different regions of the
state space.

R1

R2

Σ
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Filippov First Order Theory

Filippov first order theory defines the vector field if the solution
approaches the discontinuous surface.

The trajectory of ẋ = f1(x), with x(0) = x0 reaches at Σ in finite time.

Let n(x) is the unit normal to Σ at x i.e. n(x) = hx(x)
‖hx(x)‖ where,

hx(x) = ∇h(x) and ∇ = ∂
∂x .

Transversal Crossing: If at
x ∈ Σ,

(nT (x)f1(x)).(nT (x)f2(x)) > 0,

leave Σ:

if nT (x)f1(x) > 0, to R2,
if nT (x)f1(x) < 0, to R1.
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Filippov Theory: Sliding

Sliding:
(nT (x)f1(x)).(nT (x)f2(x)) < 0

Attracting: Have existence and uniqueness (a1 in Fig. [II]):

(nT (x)f1(x)) > 0 and (nT (x)f2(x)) < 0

Repulsive: No uniqueness. Not covered.

Filippov vector field: While
sliding along Σ, time derivative fF

is given by,

fF (x) = (1−α(x))f1(x)+α(x)f2(x),

α(x) =
nT (x)f1(x)

nT (x)(f1(x) − f2(x))
·

Exit: during sliding, if one of the
vector fields starts to point away,
the solution continues above or
below the sliding surface.
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Proposed Modeling Formulation

According to FT, a system can have three states: h(x) < 0 (R1).
h(x) > 0 (R2), and h(x) = 0 (SLIDING).

To implement in Modelica, we introduce two discrete variables: say z1

and z2, into the differential equations, as follows:

ẋ = f1(x) z1(1− z2) + f2(x)(1− z1)(1− z2) + fF (x)z2

Depending on the values of z1

and z2 (e.g. 1 or 0), a proper
vector field is activated.

In the SLIDING state the
value of z2 = 1.

SLIDING deactivates both
f1(x) and f2(x), without the
need of changing the value of
z1. So the previous value
(pre(z1)) is retained.
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Case Study I: Stick-slip System

Consider the two-dimensional
Stick-slip system:

ẋ = f(x) =

{
f1(x) when h(x) < 0

f2(x) when h(x) > 0

where h(x) = x2 − 0.2 with

f1(x) =

(
x2

−x1 + 1
1.2−x2

)
,

f2(x) =

(
x2

−x1 − 1
0.8+x2

)
,

Simulation issues are observed
with a direct implementation
of this system using Modelica
in OpenModelica and Dymola.

OpenModelica: Chattering detected
around time
0.221654558425..0.221654756475 (100
state events in a row with a total time
delta less than the step size 0.001).

Dymola: DASSL fails to continue the
simulation. However RkFix2 and
Euler allows to continue exposing
chattering.

Due to chattering during the
simulation, the results are not
mathematically accurate.

It is not possible to understand the
dynamic behavior of the real physical
system.
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Case Study I: Stick-slip System

Using this FT based implementation the simulation of this system can be
successfully carried out in both OpenModelica and Dymola without
numerical issues.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x1

der(x2) [NF]

der(x2) [F]

Figure 1: Time derivative of state variable (ẋ1)
of stick-slip system without (NF) and with (F)

Filippov theory simulated in Dymola.
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Figure 2: Periodic trajectories of the stick-slip
system obtained in different simulation software

tools.

Modelica2020US September 22-24, 2020 10 / 16



Case Study II: A Realy Feedback System

A relay feedback system with
single-input and single-output
is as follows:

ẋ = f(x) =

{
f1(x) when h(x) < 0

f2(x) when h(x) > 0

where h(x) = x1 with

f1(x) =

 −(2ζω + 1)x1 + x2 + 1
−(2ζω + ω2)x1 + x3 − 2σ

−ω2x1 + 1

 ,

f2(x) =

 −(2ζω + 1)x1 + x2 − 1
−(2ζω + ω2)x1 + x3 + 2σ

−ω2x1 − 1

 .
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Case Study III: Anti-windup PI in an SMIB

DAEs:

ẋ = f(x, y)

0 = g(x, y)

h(x) = kpva + xi − vmax

f2(x, y):

ė′q =
1

T ′d0

(vmax − xd
x′d
e′q +

xd − x′d
x′d

v1cos(δ − θ1))

ẋi = 0

f1(x, y):

δ̇ = ω

ω̇ =
1

M
(pm − pe −Dω)

ė′q =
1

T ′d0

(vf −
xd
x′d
e′q +
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Case Study III: Implementation Using Filippov Theory

Calculating, hx(x) = [∂h(x)
∂x1

∂h(x)
∂x2

... ∂h(x)
∂x6

]T = [0 0 0 kp 1 0]T .

On the switching manifold,

hTx (x)f1(x, y) = kp((ka(vref + c3 − v1)− va)/Ta ) + kiva ,

hTx (x)f2(x, y) = kp((ka(vref + c3 − v1)− va)/Ta ) .

If an attractive sliding occurs on Σ, then α(x, y) is given by:

α(x, y) =
kp((ka(vref + c3 − v1)− va)/Ta ) + kiva

kiva
.

Thus during the sliding:

fF (x, y) = −kp((ka(vref + c3 − v1)− va)/Ta ) .

These expressions are used in the Modelica implementation.
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Case Study III: Results of SMIB System

The SMIB system is implemented considering the FT-based formulation
and a deadband based method in Modelica.

Disturbance: step change in the voltage reference set-point (vref = 1.01)
and load (pl0 = 0.71 pu, ql0 = 0.016 pu) at t = 5 s.
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Figure 3: Time derivative of the integrator
state variable (ẋi) in the AW PI controller with
respect to the state variable (xi) using DB and

Filippov (F) methods simulated in Dymola.
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Figure 4: Trajectories of the field voltage (vf )
using DB and Filippov (F) methods simulated in

Dymola.
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Conclusions and Future Work

A generic formulation to implement Filippov system models with sliding
motion using Modelica is proposed.

Three examples are presented considering such a general-purpose design
and implementation details are given.

Simulation results in different Modelica tools indicate accurate dynamic
response without any chattering or simulation halt.

Future Work:

Future work will extend the FT-based design for multiple discontinuity
surface.
Study the advantages from computational point of view.

The case studies are posted on-line!
https://github.com/ALSETLab/Modelica_Fillipov_Sliding_Models
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Thank you!
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