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Motivation

e Modelica is an industry standard to model hybrid (discrete-continuous)
dynamical systems described by ODEs or DAEs.

o A subclass of hybrid systems referred to as Filippov systems where
discontinuities appear in the right hand side of the model’s equations.

o A Modelica implementation of the Filippov systems without considering
Filippov formalism leads to chattering-Zeno-type deadlocks, which
consists of infinitely many instantaneous switches of the discrete variables
during time domain simulation.

e This significantly restrains the performance of the solvers of Modelica
simulation tools and can lead to a simulation halt.

@ A generalized formulation is required for smooth continuation of
trajectories of Fillippov system models in Modelica tools.
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Objectives

e To propose a generic formulation based on Filippov Theory (FT) for the
implementation and direct numerical simulation of Filippov systems with
one sliding surface using Modelica.

o To validate the proposed formulation comparing the results with a
Matlab implementation and via simulation in two Modelica tools, namely
OpenModelica and Dymola.
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Filippov Theory

e Consider the following switched dynamical system:

b= () — f1(x) when h(x) <0
f(@) {f2(:c) when h(x) >0

@ The state space R™ is split into two regions R; and Rs separated by a
hyper-surface 3. Where,

Ry ={xz € R" | h(x) < 0},

Ry = {x € R" | h(z) > 0}, 22;’

Y ={x eR" | h(x) =0}

e Filippov convex method: the vector / / — \
field on the surface of discontinuity is / / 7 — \
a convex combination of the vector /' / / — > \

fields in the different regions of the
state space.
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Filippov First Order Theory

e Filippov first order theory defines the vector field if the solution
approaches the discontinuous surface.

@ The trajectory of & = f1(x), with (0) = xo reaches at ¥ in finite time.

e Let n(x) is the unit normal to ¥ at x i.e. n(x) = szigg” where,
he(z) = Vh(z) and V = 2.

o Transversal Crossing: If at
x € X,

(n”(x) f1(x)).(n" (2) f2(z)) > 0,

leave X:

o if nT(z)f1(x) > 0, to Rz,
o if n”(x)f1(x) <0, to Ry.
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Filippov Theory: Sliding

e Sliding;:
(n"(2) f1(2)).(n" (2) f2(z)) < 0

o Attracting: Have existence and uniqueness (a1 in Fig. [I]):
(n" (@) f1(z)) > 0 and (n” (@) f2()) <0
e Repulsive: No uniqueness. Not covered.

o Filippov vector field: While
sliding along ¥, time derivative fg Ry

is given by,

fr(z) = (1-a(z)) f1(z)+a(z) f2(x)
n’(z)f1(x

o) (2)f1 ()

n’(z)(f1(z) — f2(x))

o Exit: during sliding, if one of the
vector fields starts to point away,
the solution continues above or
below the sliding surface.

(1]
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Proposed Modeling Formulation

e According to FT, a system can have three states: h(z) < 0 (R1).
h(z) > 0 (R2), and h(z) = 0 (SLIDING).

e To implement in Modelica, we introduce two discrete variables: say z;
and zo, into the differential equations, as follows:

@ = fi(z) z21(1 — 22) + fa(z)(1 — 21)(1 — 22) + fr(z)22

@ Depending on the values of z;
and z3 (e.g. 1 or 0), a proper
vector field is activated.

o In the SLIDING state the
value of zo = 1.

e SLIDING deactivates both
fi(x) and fa(z), without the
need of changing the value of
z1. So the previous value
(pre(z1)) is retained.
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Case Study I: Stick-slip System

o Consider the two-dimensional e OpenModelica: Chattering detected
Stick-slip system: around time
0.221654558425..0.221654756475 (100
) fi(x) when h(z) <0  state events in a row with a total time
= f(x)= {fQ(a:) when h(z) >0  delta less than the step size 0.001).

o Dymola: DASSL fails to continue the
where h(r) = z2 — 0.2 with simulation. However RkFix2 and
Euler allows to continue exposing
filz) = (—561 f2 ) ) 7 chattering.
1.2-xs @ Due to chattering during the
folz) = ( T ) ) 7 simulation, the results are not
—T1 = 58tz mathematically accurate.
o It is not possible to understand the
dynamic behavior of the real physical
system.

e Simulation issues are observed
with a direct implementation
of this system using Modelica
in OpenModelica and Dymola.
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Case Study I: Stick-slip System

e Using this FT based implementation the simulation of this system can be
successfully carried out in both OpenModelica and Dymola without

numerical issues.

e der(x2) INFI
dode o e der(x2) (F]
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Figure 1: Time derivative of state variable (&)
of stick-slip system without (NF) and with (F)
Filippov theory simulated in Dymola.
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Figure 2: Periodic trajectories of the stick-slip
system obtained in different simulation software
tools.
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Case Study II: A Realy Feedback System

o A relay feedback system with
single-input and single-output
is as follows:

C () — fi(z) when h(z) <0
= f@) {fg(:c) when h(z) >0

0012 -0.008 0004 0.000 0,004 0.008 0012

where h(z) = x; with

—(26w+ Dz + 29+ 1
fl(ﬂl‘) = 7(2@1 + w2)m1 + T3 — 20 s
—w?z1 +1

—(2¢w+ Dz +22—1
fo(z) = | —(2€w +w?)z1 + 234 20

—w?z; —1
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Case Study III: Anti-windup PI in an SMIB

o DAEs: o fz(w,y):
. 1 o
&= f(z,y) &y = T—/(vmax - %e; + mdx, xdvlcos(é —61))
0=g(z,y) do d d
;=0
o h(x) = kpvg + x; — V™
° f1 (:E, y): L0y 03205 L0
5 =W I Jris I jTas I
Gen
1 I I;pw—jqz I D
W = M(pm — Pe — DW)
. 1 Td Tq — :L'/
e = —(vy— =€ 41y cos(d — 0
0TI, T et g ees0 )

Vg = (ka(vreer cs —v1) — )/ Ty

JUL = k,"Ua
. 1
51 = E(Cz —51)
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Case Study III: Implementation Using Filippov Theory

Calculating, h, () = [ 22 ST — 90 0 k, 1 0]

Oxa T

On the switching manifold,

he (@) fi(@,y) = kp((ka (0™ + 3 — v1) = v4) /T ) + kiva
hf(w)fz(f&y) = kp((ka(vref+ c3 —v1) —va)/Ta ) -

If an attractive sliding occurs on X, then «a(z,y) is given by:

Ky (ko (V™ + c5 — v1) — va)/Ta ) + kiva

a(x7y) = kﬂ)a

Thus during the sliding:

fr(z,y) = *kp((ka(vreer c3 —v1) = va)/Ta ) -

These expressions are used in the Modelica implementation.
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Case Study III: Results of SMIB System

e The SMIB system is implemented considering the FT-based formulation
and a deadband based method in Modelica.

e Disturbance: step change in the voltage reference set-point (v"°f = 1.01)
and load (p;o = 0.71 pu, g0 = 0.016 pu) at t =5 s.

—— der(x) [DB]
rrrrr der(x) [F]

Time(s)

Figure 3: Time derivative of the integrator
state variable (i) in the AW PI controller with ~ Figure 4: Trajectories of the field voltage (vy)
respect to the state variable (z;) using DB and using DB and Filippov (F) methods simulated in
Filippov (F) methods simulated in Dymola. Dymola.
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Conclusions and Future Work

@ A generic formulation to implement Filippov system models with sliding
motion using Modelica is proposed.

@ Three examples are presented considering such a general-purpose design
and implementation details are given.

o Simulation results in different Modelica tools indicate accurate dynamic
response without any chattering or simulation halt.
e Future Work:
o Future work will extend the FT-based design for multiple discontinuity
surface.
e Study the advantages from computational point of view.

The case studies are posted on-line!
https://github.com/ALSETLab/Modelica_Fillipov_Sliding_Models J
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https://github.com/ALSETLab/Modelica_Fillipov_Sliding_Models

Thank you!
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