
© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)
Cambridge, Massachusetts, USA

http://www.merl.com

Modeling Contact and Collisions for Robotic Assembly

2020 American Modelica Conference

Scott A. Bortoff

21-September-2020

http://www.merl.com/


© MERL

• Propose implicit, event-driven, penalty-based model of rigid body contact / collision
• Hybrid: Continuous-time DAE model + finite state machine
• Uses: Not just simulation.  Mathematical analysis, model-based control design
• Implementation: Native Modelica, variable-step, stiff (implicit) solver

Motivation: Robust Robotic Assembly, Mechanical Contact Problems
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• Physics-Based Animation: Bullet, PhyX, Gazebo (with different engines such as DART), etc.

• State-of-the-art: Represent as Nonlinear or Linear Complementary Problem (LCP), solve
– Solve a QP problem at each discrete time step
– Fixed time step, usually first-order (Euler) symplectic (to approx. conserve energy) integrator
– Simulation is the only purpose

• Documented limitations and problems...
– Energy Conservation
– Difficulty with widely ranging object sizes
– Collision detection requires non-zero margin
– Tolerances need tuning
– Not intended for numerical analysis – only to simulate
– https://youtu.be/k6nKC_DCh3o?t=188

Collisions and Contact: Lots of Previous Work
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• Forward Kinematics of each arm...

• Constraint at wrist flange (6 equations)... 

• Robot Dynamics...Index 3 DAE

• 24 equations, 24 states 

Delta Robot Differential-Algebraic Model (2018)
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H =
@h

@q

q1 = [q11, q12, q13]
T

q2 = [q21, q22, q23]
T

q3 = [q31, q32, q33]
T

 (qi) =

2

4
l2 sin(qi2) sin(qi3)

l1 cos(qi1) + l2 cos(qi2)
l1 sin(qi1) + l2 sin(qi2) cos(qi3)
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h(q) =


 (q1)�Rz(2⇡/3) ·  (q2)
 (q1)�Rz(�2⇡/3) ·  (q3)

�

(q, v, �)

Replace

• Robot Dynamics ... Index 1 DAE

• Can be expressed

• Robot dynamics are zero dynamics

Arm 1:
Arm 2:
Arm 3:

h(q) : R9 ! R6

⌘ 2 R6

⇠ 2 R12
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• Dynamics

• Elastic collision...

• Properties...
1. after collision transient – enforces penetration 

constraint
2. Numerically stiff for large

• Replace stabilized constraint with ...

• This is stiff during collision, but soft in steady-state
• Replace switching condition with FSM

– Because 

Contact and Collision Model Idea
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q̇ = v

M(q)v̇ + C(q, v) +G(q) = �
T
H(q) +Bu

h
00(q, v,�) + ↵1h

0(q, v) + ↵0h(q) = 0
� > 0� = 0

Free Contacth  0Free
Contact

This can model 
elastic collision

� > 0
� = 0

ḧ+ ↵1ḣ+ ↵0h = 0 Tune       ,    ↵1 ↵0

h ! 0

↵0

ḧ+ ↵1ḣ+ ↵0h+ ↵3h
3 = 0

So add nonlinear feedback

h ! 0

Not quite right ... because h à 0

h
h  0�  0

21-Sep-2020



© MERL

Free
Contact = 0

Contact
Contact = 1

Ballistic
Contact = 2

� < 0

h > 0

h  0

h < 0
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• Dynamics

• Elastic collision...

• Properties...
1. after collision transient – enforces penetration 

constraint
2. Numerically stiff for large

• Replace stabilized constraint with ...

• This is stiff during collision, but soft in steady-state
• Replace switching condition with FSM

– Because 

Contact and Collision Model Idea
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↵0
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3 = 0

So add nonlinear feedback

h ! 0

Add third state

Finite State Machine

h
h  0

“Ballistic”

� = 0

� < 0

h < 0
ḣ < 0

h > 0
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Free
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Bouncing Ball Example
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q̇ = v

mv̇ = �mg + �
q̇ = v

mv̇ = �mg

� = 00 = ḧ+ ↵1ḣ+ ↵0h+ ↵3h
3

Example 1: Positive Damping
Example 2: No Damping

Increasing energy

21-Sep-2020



© MERL

Free
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� < 0

h > 0

h  0

h < 0
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• Contact State

• Solve for Lagrange Multiplier...

• If this were a “spring force,” the g would not appear
• This force adds energy to the ball when           and
• This force is responsible for

– (no penetration in steady state)  ... Good
– Failure to conserve energy ... Bad

• But, its not that bad
– Energy added only when            and 
– In typical applications,             (and            isn’t stable)
– Many “physics engines” also fail to conserve energy! 

What’s Going On?  A Failure to Conserve Energy.  D’ Oh!
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q̇ = v

mv̇ = �mg + �

0 = ḧ+ ↵1ḣ+ ↵0h+ ↵3h
3

h > 0� > 0

h ! 0

↵1 > 0 ↵1 = 0

� > 0 ḣ 6= 0
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• Strategy: Tip maze to constant angle, rotate maze about axis 
• Open-loop unstable against rings.  Stabilize with feedback.

Ball Maze Game
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1. Stabilize ball with lead compensator

2. Stabilize maze with lead compensator

Ball Maze Lead-Compensator Control Design
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1) Ball lead compensator

Step 1.  Stabilize Ball Step 2.  Stabilize Maze

Unstable
Pole

Controller
Zero

Controller
Pole

2) Maze lead compensator

kb
1 + s/!1

1 + s/!2

km
1 + s/!3

1 + s/!4

Non-minimum
phase

Pole at origin

Controller
Zero

Controller
Pole

Lower bound on
Upper bound on 

kb
km

Note Fundamental Limits: 
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• Feedback control to stabilize ball
• Rotate maze to bring gate sequence under ball 

Ball – Maze Simulation Results
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Soft-Touch Robotic Control
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Simulation Example – Soft-Contact
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• Hybrid DAE – FSM model of rigid body contact and collision
• Consistent mathematics – modeling with separation of concerns e.g. solver
• Native Modelica enables analysis beyond simulation.  But can FSM be improved?
• Useful for some types of contact

– Low dimensions
– Positive damping, but not too stiff

• Caveat: Event based method – critically dependent on event detection.  (Can fail.)
• Code for Ball Maze, bouncing ball available.  Email: bortoff@merl.com

Summary & Conclusions
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Thank – you!
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Serial-Link Vs. Delta Robots – Mechanical Design

6-Feb-2020 16

Open Chain
High Mass, High Inertia à Slow
High Ratio Gears 
Small Servos, High Friction, Not Back-Drivable, although...
High Impedance – Stiff
Low payload to robot mass ratio ~ O(0.1)
Coupled Force / Torque
High Precision Mechanical Position Control
High Joint & Link Bending
Larger work volume
More expensive
Pick and Place, Assembly Applications

Complex Closed Chain
Low Mass, Inertia à Fast
Direct Drive, although... 
Big Servos, Low Friction, Back-Drivable
Low Impedance – Soft
High payload to robot mass ratio ~ O(10)
Decoupled Force / Torque
High Precision Mechanical Position Control
Low Joint & Link Bending
Smaller work volume, although...
Less expensive
Pick and Place Applications

MELCO Co-bot 
(1Q2020)

* http://www.pandct.com/media/shownews.asp?ID=54275

Codian - MELCO Delta Robot*
(3Q2019)

Good for Assembly (Contact) ApplicationsNot So Good for Assembly (Contact) Applications

• Volume: 1.5 m x 0.4 m
• Payload < 100kg
• Max. 250 ops / min

All
Joints
Actuated

Some
Joints
Actuated

Unactuated



© MERL

Serial-Link Vs. Delta Robot – Kinematics, Dynamics

6-Feb-2020 17

Forward Kinematics – Implicit (no Closed Form)

Conventional Jacobian – Implicit if expressed in    ...

BUT, Jacobian is explicit if expressed in 

So Dynamics – Loops in Loops - are NOT a problem

Kinematic Loop – Conventional Becomes Difficult
Unless we are unconventional !

Open Chain – Conventional Calculations

Forward Kinematics – Explicit (analytic, closed-form)

Jacobian – Explicit (analytic closed form)

Dynamics – ODE (all analytic, closed-form)

M(q)v̇ + C(q, v) +D(v) +G(q) = u+ ⌧

f
q1

q2

q3
q4

q5

z

q 2 R9

y 2 R3
Joint Angles
Measurements
Inputsu 2 R3

Joint Angles
Measurements
Inputs (Co-located)
End effector

q 2 R5

y = q

u 2 R5

z
f

z 2 R3

⌧ = JT (q)f

z = F (q)

J(q) =
@F (q)

@q

F (q, z) = 0 (6 equations, 6 unknowns, solved numerically) 

J(y) =
@f(y)

@y
(computed by Implicit Function Theorem, 

evaluated numerically.  Used for control.)

⌧ = JT (q)fM(y)ÿ + C(y, ẏ) +D(y) +G(y) = u+ ⌧

J(q) =
@f

@q

y

q

(maps forces at end effector to virtual
torques at all 9 joints.  Used for simulation. )
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Modelica Realization of the DAE Model
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model deltaRobotLagrange

Arms.deltaRobotArmLagrange arm1, arm2, arm3;
Real lambda[6];      // Lagrange multiplier
Real h0[6], h1[6], h2[6];
Input Real u[3], f[3];      // torque inputs, force inputs
parameter Real POLE = 5.0;

constant Real Rot2[3,3] = Utilities.RotZ(2.0*PI/3.0);
constant Real Rot3[3,3] = Utilities.RotZ(-2.0*PI/3.0);
constant Real B[3] = {1, 0, 0};  // input torque vector

equation

arm1.tau =  transpose(arm1.dh) * lambda[1:3] + transpose(arm1.dh) * lambda[4:6] + transpose(dz1) * f + B * u[1];
arm2.tau = -transpose(Rot2 * arm2.dh) * lambda[1:3] + B * u[2] + transpose(dz2) * f;
arm3.tau = -transpose(Rot3 * arm3.dh) * lambda[4:6] + B * u[3] + transpose(dz3) * f; 

h0 = cat(1,arm1.psi-Rot2*arm2.psi,arm1.ps -Rot3*arm3.psi);
h1 = der(h0);
h2 = der(h1);
zeros(6) = h2 + 2.0 * POLE * h1 + POLEˆ2 * h0;

y = cat(1, vector(arm1.q[1]), vector(arm2.q[1]), vector(arm3.q[1]));
yDot = cat(1, vector(arm1.v[1]), vector(arm2.v[1]), vector(arm3.v[1]));

dz1 = Controllers.Functions.armJacobian(arm1.q) / 3.0;
dz2 = R2*Controllers.Functions.armJacobian(arm2.q) / 3.0;
dz3 = R3*Controllers.Functions.armJacobian(arm3.q) / 3.0;
Jv = cat(2, dz1, dz2, dz3);

z = arm1.h;
zDot = Jv * cat(1, vector(arm1.v), vector(arm2.v), vector(arm3.v));

end deltaRobotLagrange;

Declare 3 arms

Declare Lagrange Multiplier

Declare Constraint

Constant Rotation Matrices

Virtual Jacobian

Servo Angle Measurements

Jv

y, ẏ

Wrist Flange location z, ż

q̇i = vi

m(qi)v̇i + c(qi, vi) + g(qi) = b⌧
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Simple Example of Dynamic Analysis (Robot is Open-Loop Unstable)
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12 Poles and Zeros

6 Pole Pairs

qi1 =
⇡

4
rad = 45�

Unstable

qi1 = 0 rad = 0�

Fundamental Limits of performance.
Lower limit on feedback gain
e.g. if PID is used, kP has lower bound
Has implications on force control !
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Stable Configuration Unstable Configuration


