
© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)
Cambridge, Massachusetts, USA

http://www.merl.com

Modeling Contact and Collisions for Robotic Assembly

2020 American Modelica Conference

Scott A. Bortoff

21-September-2020

http://www.merl.com/

© MERL

• Propose implicit, event-driven, penalty-based model of rigid body contact / collision
• Hybrid: Continuous-time DAE model + finite state machine
• Uses: Not just simulation. Mathematical analysis, model-based control design
• Implementation: Native Modelica, variable-step, stiff (implicit) solver

Motivation: Robust Robotic Assembly, Mechanical Contact Problems

2

Ball MazeMERL Delta Robot

Mechanical Assembly

Elevator Motion

Lift off
chain
pile

Chain Fountain

Tensegrity

21-Sep-2020

© MERL

• Physics-Based Animation: Bullet, PhyX, Gazebo (with different engines such as DART), etc.

• State-of-the-art: Represent as Nonlinear or Linear Complementary Problem (LCP), solve
– Solve a QP problem at each discrete time step
– Fixed time step, usually first-order (Euler) symplectic (to approx. conserve energy) integrator
– Simulation is the only purpose

• Documented limitations and problems...
– Energy Conservation
– Difficulty with widely ranging object sizes
– Collision detection requires non-zero margin
– Tolerances need tuning
– Not intended for numerical analysis – only to simulate
– https://youtu.be/k6nKC_DCh3o?t=188

Collisions and Contact: Lots of Previous Work

321-Sep-2020

© MERL

Proximal
Link 1

Distal Link 1

Distal Link 3

Proximal
Link 3

Distal
Link 2

Base

Wrist Flange

x3

x1

x2

• Forward Kinematics of each arm...

• Constraint at wrist flange (6 equations)...

• Robot Dynamics...Index 3 DAE

• 24 equations, 24 states

Delta Robot Differential-Algebraic Model (2018)

4

H =
@h

@q

q1 = [q11, q12, q13]
T

q2 = [q21, q22, q23]
T

q3 = [q31, q32, q33]
T

 (qi) =

2

4
l2 sin(qi2) sin(qi3)

l1 cos(qi1) + l2 cos(qi2)
l1 sin(qi1) + l2 sin(qi2) cos(qi3)

3

5

h(q) =


 (q1)�Rz(2⇡/3) · (q2)
 (q1)�Rz(�2⇡/3) · (q3)

�

(q, v, �)

Replace

• Robot Dynamics ... Index 1 DAE

• Can be expressed

• Robot dynamics are zero dynamics

Arm 1:
Arm 2:
Arm 3:

h(q) : R9 ! R6

⌘ 2 R6

⇠ 2 R12

21-Sep-2020

© MERL

• Dynamics

• Elastic collision...

• Properties...
1. after collision transient – enforces penetration

constraint
2. Numerically stiff for large

• Replace stabilized constraint with ...

• This is stiff during collision, but soft in steady-state
• Replace switching condition with FSM

– Because

Contact and Collision Model Idea

5

q̇ = v

M(q)v̇ + C(q, v) +G(q) = �
T
H(q) +Bu

h
00(q, v,�) + ↵1h

0(q, v) + ↵0h(q) = 0
� > 0� = 0

Free Contacth  0Free
Contact

This can model
elastic collision

� > 0
� = 0

ḧ+ ↵1ḣ+ ↵0h = 0 Tune , ↵1 ↵0

h ! 0

↵0

ḧ+ ↵1ḣ+ ↵0h+ ↵3h
3 = 0

So add nonlinear feedback

h ! 0

Not quite right ... because h à 0

h
h  0�  0

21-Sep-2020

© MERL

Free
Contact = 0

Contact
Contact = 1

Ballistic
Contact = 2

� < 0

h > 0

h  0

h < 0
ḣ < 0

• Dynamics

• Elastic collision...

• Properties...
1. after collision transient – enforces penetration

constraint
2. Numerically stiff for large

• Replace stabilized constraint with ...

• This is stiff during collision, but soft in steady-state
• Replace switching condition with FSM

– Because

Contact and Collision Model Idea

6

q̇ = v

M(q)v̇ + C(q, v) +G(q) = �
T
H(q) +Bu

h
00(q, v,�) + ↵1h

0(q, v) + ↵0h(q) = 0
� > 0� = 0

Free Contacth  0Free
Contact

This can model
elastic collision

� > 0
� = 0

ḧ+ ↵1ḣ+ ↵0h = 0 Tune , ↵1 ↵0

h ! 0

↵0

ḧ+ ↵1ḣ+ ↵0h+ ↵3h
3 = 0

So add nonlinear feedback

h ! 0

Add third state

Finite State Machine

h
h  0

“Ballistic”

� = 0

� < 0

h < 0
ḣ < 0

h > 0

21-Sep-2020

or h  0 h > 0

© MERL

Free
Contact = 0

Contact
Contact = 1

Ballistic
Contact = 2

� < 0

h > 0

h  0

h < 0
ḣ < 0

Bouncing Ball Example

7

q̇ = v

mv̇ = �mg + �
q̇ = v

mv̇ = �mg

� = 00 = ḧ+ ↵1ḣ+ ↵0h+ ↵3h
3

Example 1: Positive Damping
Example 2: No Damping

Increasing energy

21-Sep-2020

© MERL

Free
Contact = 0

Contact
Contact = 1

Ballistic
Contact = 2

� < 0

h > 0

h  0

h < 0
ḣ < 0

• Contact State

• Solve for Lagrange Multiplier...

• If this were a “spring force,” the g would not appear
• This force adds energy to the ball when and
• This force is responsible for

– (no penetration in steady state) ... Good
– Failure to conserve energy ... Bad

• But, its not that bad
– Energy added only when and
– In typical applications, (and isn’t stable)
– Many “physics engines” also fail to conserve energy!

What’s Going On? A Failure to Conserve Energy. D’ Oh!

8

q̇ = v

mv̇ = �mg + �

0 = ḧ+ ↵1ḣ+ ↵0h+ ↵3h
3

h > 0� > 0

h ! 0

↵1 > 0 ↵1 = 0

� > 0 ḣ 6= 0

21-Sep-2020

© MERL

Free
Contact = 0

Ring 1
Contact

Contact = 1

Free
Gate 1

Contact = 2

Ring 2
Contact

Contact = 3

Free
Gate 2

Contact = 4

Ring 3
Contact

Contact = 5

Free
Gate 3

Contact = 6

Goal Ring
Contact

Contact = 7

• Strategy: Tip maze to constant angle, rotate maze about axis
• Open-loop unstable against rings. Stabilize with feedback.

Ball Maze Game

9

Dynamics

Ring 1

Ring 2

Ring 3

Gravity

Central
Axis

FSM

Constraints

Ring

Rolling

21-Sep-2020

© MERL

1. Stabilize ball with lead compensator

2. Stabilize maze with lead compensator

Ball Maze Lead-Compensator Control Design

10

1) Ball lead compensator

Step 1. Stabilize Ball Step 2. Stabilize Maze

Unstable
Pole

Controller
Zero

Controller
Pole

2) Maze lead compensator

kb
1 + s/!1

1 + s/!2

km
1 + s/!3

1 + s/!4

Non-minimum
phase

Pole at origin

Controller
Zero

Controller
Pole

Lower bound on
Upper bound on

kb
km

Note Fundamental Limits:

21-Sep-2020

© MERL

• Feedback control to stabilize ball
• Rotate maze to bring gate sequence under ball

Ball – Maze Simulation Results

11

Ring 1

Ring 2

Ring 3

Gravity

Central
Axis

21-Sep-2020

© MERL

Soft-Touch Robotic Control

12

Robot
Physics

Lego Brick Model

Discrete-Time
Controller

Trajectory
Generation

Clock

Synchronous Library
Device Drivers Library

MERL’s Kamaji

Wrist
Flange

Distal
Links

Proximal
Links

Servos

Discrete-Time
Controller
Discrete-Time
Controller

21-Sep-2020

© MERL

Simulation Example – Soft-Contact

13

Wrist Flange

Gripper

Right
Touch

Sensors
(3)

Left
Touch

Sensors
(3)

R(p, ✓)

Proximal
Link 1

Distal Link 1

Distal Link 3

Proximal
Link 3

Distal
Link 2

Base

Wrist Flange

x3

x1

x2

21-Sep-2020

© MERL

• Hybrid DAE – FSM model of rigid body contact and collision
• Consistent mathematics – modeling with separation of concerns e.g. solver
• Native Modelica enables analysis beyond simulation. But can FSM be improved?
• Useful for some types of contact

– Low dimensions
– Positive damping, but not too stiff

• Caveat: Event based method – critically dependent on event detection. (Can fail.)
• Code for Ball Maze, bouncing ball available. Email: bortoff@merl.com

Summary & Conclusions

14

Thank – you!

21-Sep-2020

© MERL

Serial-Link Vs. Delta Robots – Mechanical Design

6-Feb-2020 16

Open Chain
High Mass, High Inertia à Slow
High Ratio Gears
Small Servos, High Friction, Not Back-Drivable, although...
High Impedance – Stiff
Low payload to robot mass ratio ~ O(0.1)
Coupled Force / Torque
High Precision Mechanical Position Control
High Joint & Link Bending
Larger work volume
More expensive
Pick and Place, Assembly Applications

Complex Closed Chain
Low Mass, Inertia à Fast
Direct Drive, although...
Big Servos, Low Friction, Back-Drivable
Low Impedance – Soft
High payload to robot mass ratio ~ O(10)
Decoupled Force / Torque
High Precision Mechanical Position Control
Low Joint & Link Bending
Smaller work volume, although...
Less expensive
Pick and Place Applications

MELCO Co-bot
(1Q2020)

* http://www.pandct.com/media/shownews.asp?ID=54275

Codian - MELCO Delta Robot*
(3Q2019)

Good for Assembly (Contact) ApplicationsNot So Good for Assembly (Contact) Applications

• Volume: 1.5 m x 0.4 m
• Payload < 100kg
• Max. 250 ops / min

All
Joints
Actuated

Some
Joints
Actuated

Unactuated

© MERL

Serial-Link Vs. Delta Robot – Kinematics, Dynamics

6-Feb-2020 17

Forward Kinematics – Implicit (no Closed Form)

Conventional Jacobian – Implicit if expressed in ...

BUT, Jacobian is explicit if expressed in

So Dynamics – Loops in Loops - are NOT a problem

Kinematic Loop – Conventional Becomes Difficult
Unless we are unconventional !

Open Chain – Conventional Calculations

Forward Kinematics – Explicit (analytic, closed-form)

Jacobian – Explicit (analytic closed form)

Dynamics – ODE (all analytic, closed-form)

M(q)v̇ + C(q, v) +D(v) +G(q) = u+ ⌧

f
q1

q2

q3
q4

q5

z

q 2 R9

y 2 R3
Joint Angles
Measurements
Inputsu 2 R3

Joint Angles
Measurements
Inputs (Co-located)
End effector

q 2 R5

y = q

u 2 R5

z
f

z 2 R3

⌧ = JT (q)f

z = F (q)

J(q) =
@F (q)

@q

F (q, z) = 0 (6 equations, 6 unknowns, solved numerically)

J(y) =
@f(y)

@y
(computed by Implicit Function Theorem,

evaluated numerically. Used for control.)

⌧ = JT (q)fM(y)ÿ + C(y, ẏ) +D(y) +G(y) = u+ ⌧

J(q) =
@f

@q

y

q

(maps forces at end effector to virtual
torques at all 9 joints. Used for simulation.)

© MERL

Modelica Realization of the DAE Model

18

model deltaRobotLagrange

Arms.deltaRobotArmLagrange arm1, arm2, arm3;
Real lambda[6]; // Lagrange multiplier
Real h0[6], h1[6], h2[6];
Input Real u[3], f[3]; // torque inputs, force inputs
parameter Real POLE = 5.0;

constant Real Rot2[3,3] = Utilities.RotZ(2.0*PI/3.0);
constant Real Rot3[3,3] = Utilities.RotZ(-2.0*PI/3.0);
constant Real B[3] = {1, 0, 0}; // input torque vector

equation

arm1.tau = transpose(arm1.dh) * lambda[1:3] + transpose(arm1.dh) * lambda[4:6] + transpose(dz1) * f + B * u[1];
arm2.tau = -transpose(Rot2 * arm2.dh) * lambda[1:3] + B * u[2] + transpose(dz2) * f;
arm3.tau = -transpose(Rot3 * arm3.dh) * lambda[4:6] + B * u[3] + transpose(dz3) * f;

h0 = cat(1,arm1.psi-Rot2*arm2.psi,arm1.ps -Rot3*arm3.psi);
h1 = der(h0);
h2 = der(h1);
zeros(6) = h2 + 2.0 * POLE * h1 + POLEˆ2 * h0;

y = cat(1, vector(arm1.q[1]), vector(arm2.q[1]), vector(arm3.q[1]));
yDot = cat(1, vector(arm1.v[1]), vector(arm2.v[1]), vector(arm3.v[1]));

dz1 = Controllers.Functions.armJacobian(arm1.q) / 3.0;
dz2 = R2*Controllers.Functions.armJacobian(arm2.q) / 3.0;
dz3 = R3*Controllers.Functions.armJacobian(arm3.q) / 3.0;
Jv = cat(2, dz1, dz2, dz3);

z = arm1.h;
zDot = Jv * cat(1, vector(arm1.v), vector(arm2.v), vector(arm3.v));

end deltaRobotLagrange;

Declare 3 arms

Declare Lagrange Multiplier

Declare Constraint

Constant Rotation Matrices

Virtual Jacobian

Servo Angle Measurements

Jv

y, ẏ

Wrist Flange location z, ż

q̇i = vi

m(qi)v̇i + c(qi, vi) + g(qi) = b⌧

6-Feb-2020

© MERL

Simple Example of Dynamic Analysis (Robot is Open-Loop Unstable)

19

12 Poles and Zeros

6 Pole Pairs

qi1 =
⇡

4
rad = 45�

Unstable

qi1 = 0 rad = 0�

Fundamental Limits of performance.
Lower limit on feedback gain
e.g. if PID is used, kP has lower bound
Has implications on force control !

6-Feb-2020

Stable Configuration Unstable Configuration

