
Time-domain Simulation Performance
Benchmark between Modelica and
Dymola
Sergio A. Dorado-Rojas, Manuel Navarro Catalán, Marcelo de Castro Fernandes, Luigi Vanfretti

Prof. Luigi
Vanfretti

Marcelo
de Castro

F’18

Manuel
Navarro

F’18

Sergio
Dorado-Rojas

S’19

September 2020
2

● Background
● Methodology

○ OpenIPSL Library
○ IEEE 14 Bus Power System with OpenIPSL

● Simulation Automation
● Simulation Results
● Performance Results
● Performance Scores
● Future Work

Overview

September 2020
3

● Background
● Methodology

○ OpenIPSL Library
○ IEEE 14 Bus Power System with OpenIPSL

● Simulation Automation
● Simulation Results
● Performance Results
● Performance Scores
● Future Work

Overview

September 2020
4

Modelica represents an accurate, equation-based, multi-domain modeling and simulation alternative.
● The impact of the Modelica language has grown significantly during the last years.
● Development of a vast amount of libraries from users coming from a very wide spectrum.

Background

It is not clear how open-source tools measure up to tools with a price tag

This work addresses this question by comparing the time-domain simulation performance of Dymola
and OpenModelica subjected to different solver settings

Computer-based studies are common in power systems.
Complexity of models increases with the on-going penetration of renewable energies.

Free tools such as OpenModelica are fundamental for learning
the language at no cost.

Commercial tools such as Dymola, SystemModeler or
SimulationX provide advanced functionalities that
satisfy particular requirements from the industry.

September 2020
5

● Background
● Methodology

○ OpenIPSL Library
○ IEEE 14 Bus Power System with OpenIPSL

● Simulation Automation
● Simulation Results
● Performance Results
● Performance Scores
● Future Work

Overview

September 2020
6

Methodology

The proposed benchmark was developed as follows:

● Modification of the IEEE14 bus application example of the open-source library OpenIPSL to configure
three different simulation discrete event scenarios

● Automation of time-domain simulations with Python using the corresponding Dymola/OpenModelica
interfaces.

● Quantify the results of the simulation execution for the different tools in each scenario through a
single performance metric.

https://github.com/OpenIPSL/OpenIPSL

September 2020
7

OpenIPSL Library

OpenIPSL enables:

• Unambiguous model exchange

• Formal mathematical description of models

• Separation of models from tools/IDEs and solvers
• Use of object-oriented paradigms

https://github.com/OpenIPSL/OpenIPSL

OpenIPSL is an open-source Modelica library for power
systems

• It contains a set of power system components for phasor time
domain modeling and simulation

• Models have been validated against a number of reference tools
(mainly PSS/E)

https://github.com/OpenIPSL/OpenIPSL

September 2020
8

IEEE 14 Bus System

Single-line diagram OpenIPSL implementation

Introduced
to produce
discrete
events

OpenIPSL Implementation

September 2020
9

Description of Testing Scenarios

The IEEE 14 Bus model will be tested for:

● Different Modelica Software
○ Dymola
○ OpenModelica

● Different Solvers
○ dassl
○ euler
○ Runge Kutta

● Different Scenarios
○ Model Initialization
○ Line Opening (Between buses 2 and 4)

t = 60 s and re-close at t = 61.5 s
○ Bus Three-phase-to-Ground Faults

One happening at t = 20 s and removed at t = 21.2 s
The other at t = 80 s and removed at t = 81.2 s

Example:
dassl

Initialization
Scenario

September 2020
10

● Background
● Methodology

○ OpenIPSL Library
○ IEEE 14 Bus Power System with OpenIPSL

● Simulation Automation
● Simulation Results
● Performance Results
● Performance Scores
● Future Work

Overview

September 2020
11

Equipment Specifications

Item Characteristic

Operating System Ubuntu Server 18.04 LTS

RAM 128 GB

Processor Intel ® Xeon ® CPU E-1650 v4 12 Cores @ 3.60
GHz 15 MB Cache

Storage 1 TB

Graphics 4 x NVIDIA GTX 1080 Ti (CUDA Capable)
11 GB GDDR5X (each)

Dymola Distribution Dymola 2020x

OM Distribution 1.14.0

Python Release 3.6.8

Dymola & OM
Compiler MinGW CC

September 2020
12

Script Workflow

Iterate until all
of the solvers
& scenarios in
both OM and
Dymola have

been
simulated.

September 2020
13

Simulation Automation Python Code Sample

Single loop to
perform all
simulations

Changing the
simulation
settings for
each model

automatically

September 2020
14

Simulation Automation Python Code Sample

Creating a
process to run
the simulation

using given
settings

Measurement
of performance

in a parallel
process

Complete code available in the GitHub repository

https://github.com/ALSETLab/Synthetic_Data_Generation_ML_Small_Signal

September 2020
15

● Background
● Methodology

○ OpenIPSL Library
○ IEEE 14 Bus Power System with OpenIPSL

● Simulation Automation
● Simulation Results
● Performance Results
● Performance Scores
● Future Work

Overview

September 2020
16

Simulation Results

For each scenario and for every solver, the simulation outputs:

Title, solver
and scenario
info about the

simulation.

Error between
the two

signals (OM
and Dymola).

Voltage Signal
for both OM
and Dymola
at different

buses.

September 2020
17

Performance Results Tables

Execution Time (seconds)

OpenModelica Dymola Result

Scenario 1:
Initialization

dassl 7.869 s 0.1664 s D > OM (47.3 x)

euler 277.54 s 4420.01 s OM > D (6.8 x)

rk 783.01 s 1880.01 s OM > D (5.6 x)

Scenario 2:
Line Opening

dassl 13.4 s 0.3408 s D > OM (39.3 x)

euler 310.10 s 1850.01 s OM > D (6.0 x)

rk 1086.39 s 4410 s OM > D (4.1 x)

Scenario 3:
Bus Faults

dassl 163.48 s 14.40 s D > OM (11.3 x)

euler 378.6 s 1820.01 s OM > D (4.8 x)

rk 1344.68 s 4590.01 s OM > D (3.4 x)

September 2020
18

Performance Scores

A single metric was proposed to compute a single performance score of both tools with respect to all
solvers and simulation scenarios. The basic score is known as Normalized Minimum Execution Time
(NMT)

Dymola OpenModelica

NMT[S1] NMT[S2] NMT[S3] NMT[S1] NMT[S2] NMT[S3]

dassl 1 1 1 0.0211 0.0254 0.0880

euler 0.148 0.168 0.208 1 1 1

rk 0.177 0.296 0.293 1 1 1

Better performance for variable-step solver

Better performance for fixed-step solver

September 2020
19

Future Work

● Scale up the experiments by selecting a larger power system.

● Perform the experiments enabling special features in Dymola/OpenModelica (e.g., DAE solver and
sparse solvers).

● Evaluate the performance using the latest software releases (Dymola 2021 and OM > 1.1.4).

● Evaluate the same scenarios with the Nordic 44 model

● Test this work with different computers/equipment

