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Challenges

[ Uncertainty in building load prediction
1 Occupant behavior stochasticity
[ Static hourly schedules in building energy simulation tools

1 Occupant sensor data often unavailable
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Research Question

How to predict building occupancy and
power demand on a sub-hourly basis

without occupant sensor data ?
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Methodology

 Correlation between occupant presence and light switching

Switching mainly takes place when entering or vacating a space. Hunt 1979

The switch-on probability on arrival exhibits a strong correlation with Hunt 1979
minimum daylighting illuminance in the working area.

The manual switch-off probability of the lights strongly relates to the Pigg 1998
expected length of absence.

] Extracting presence information from lighting power data
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Methodology — Occupant Presence

] Lighting power shapes and interpreted occupant presence

Lighting Power and Occupant Presenci (Ice Cream Shop) Base Lighting Power and Occupant Presence (Bakery)
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Methodology — Logistic Regression

[ Logistic regression model

1
p= 1 + e~ (BotBix1+B2x2++BmXm)

» p — probability of occupant present or extra lights on;

» x — independent variables (e.g. time of day for occupant presence)

y

1
p Logistic Model
! 1
p =

° ° ° 1+ e—(bo+byx)
O Why logistic regression? T

» It is a linear classifier and 1s easy to train
» It can reach the same level of accuracy as non-linear classifiers;

» It is easy to implement in Modelica.

Figure source: https://www.saedsayad.com/logistic_regression.htm



Methodology — Lighting Power

U Training data

» Data of summer 2018, June, July for training, August for testing

No.of correctly classified points

A =
ceuracy No.of total data points

- Predicted No Predicted Yes
oo 2

3693

Actual Yes 31 624

] Multi-stage lighting power description
P(t) = ag(t)Ppgse + a4 (t)Pextr,l + a; (t)Pextr,Z + e+ an—l(t)Pextr,n—l
» P — total lighting power;

» a; — binary variable indicating the status of base or extra lighting power;

a;(t) = Bool(Random Number < p)

» n —number of stages. 9



Methodology — Logistic Regression

J Extra lighting model in the bakery

Frequency of Extra Lights On for Day of Week: Bakery
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Day of Week

 The status of the extra lighting has a correlation with day of week
1 The total frequency of extra lights on in 2018 is only 8.8%
O To deal with the imbalance in the training dataset, we adopted the Synthetic

Minority Over-sampling Technique (SMOTE)
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Methodology — Logistic Regression

(] Regression results (Bakery)

Logistic Regression Model for Arrival: Bakery Logistic Regression Model for Departure: Bakery
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- Accuracy
Arrival 0.98
Ice Cream Shop
Departure 0.97
Arrival 0.94
Bakery Departure 0.88
Extra 0.84

11



Methodology — Implementation in Modelica

1 Modelica model for Bakery

Presence prediction
model

pre1 booToRea
- » Stochastic simulation model
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Methodology — Implementation in Modelica

(] Monthly predicted and actual lighting power (Bakery)

Monthly Lighting Power Bakery (August 2018) — Predicted Power —— Actual Power
500 A -
i 1Mo | 11

400 -
=
g 300
e
(@]
c
5 200
£
o
.|

100 1

0 .

2018-08-01 2018-08-04 2018-08-07 2018-08-10 2018-08-13 2018-08-16 2018-08-19 2018-08-22 2018-08-25 2018-08-28 2018-08-31

(d Evaluation Metrics
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Methodology — Implementation in Modelica

(] Monthly predicted and actual lighting power (Bakery)

Monthly Lighting Power Bakery (August 2018) Predicted Power Actual Power
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» Noticed oscillations in predicted power profile.

> 9 times of predicted extra lights on in a month but only 4 times of

actual extra lights on.
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Results and discussions

Departure Time Probability Distribution Bakery

Arrival Time Probability Distribution Bakery
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» Presence Prediction Performance > Probability of Extra Lights On

L B

Presence Presence Extra Lights

0.108 0.101 0.153 0 029 029 014 029 029 0.14
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Results and discussions

» Peak lighting power prediction (avg. RE)

Monthly  Discussions

Peak
Power

Weekly Peak Daily Peak
Power Power

1. Low accuracy for extra lights on
2.36% 2.36% 1.99% orediction.

m 6.90% 5.34% 2.42%

2. Simulated and actual probability of

» Lighting power prediction (avg. NMBE) extra lights on deviate on Tuesday
_IMI and Wednesday.

Monthly 0.061% 3.92% 3. Lighting power two-stage prediction
NMBE F1 -0.55% 8.28% has larger errors. The errors stay
below 6.9%.
Weekly C2 0.060% 4.07%
NMBE F1 -0.68 7.92% 4. Better prediction performance in

Daily C2 0.057% 4.03% longer prediction horizons.
NMBE F1 0.39% 44.1%

16



Conclusion

O A method for occupant presence learning and reproducing based on lighting
power data 1s proposed and validated.

O The proposed models can predict daily lighting peak power within 2.42%
relative error.

[ Stochastic models can be very accurate for longer-term predictions. However,
they cannot predict uncommon events, and this leads to larger short-term
prediction errors.

 Limitation: not having the ground truth data for occupant presence.

L Future work: cross validation of the occupant presence with other appliance

usage data.
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Jing Wang

Jing. Wang(@colorado.edu
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