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Typical Data Center Cooling
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Energy Efficient Data Center Cooling

Improving Data Center Energy Efficiency through End-to-End
Cooling Modeling and Optimization, sponsored by DOE,
https://www.colorado.edu/lab/sbs/doe-datacenter
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Cooling System Models in Buildings Library

Created 81 new models in Modelica Buildings library in 2017
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Component Models

xample: Water-cooled Variable Speed Computer Room
ir Conditioner (CRAC)
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User's Guide
Information
This package contains models for direct evaporation cooling coils (DX coils).

The following six DX coil models are available:
DX coil condenser DX coil model Properties

Control signal

Air-cooled Buildings.Fluid. HeatExchangers.DXCoils. AirCooled. MultiStage Coil with multiple operating stages, each stage
having a constant speed. Each stage has its
own performance curve, which may represent
the coil performance at different compressor
speed, or the coil performance as it switches
between cooling only, cooling with hot gas
reheat, or heating only.

Integer; O for off, 1 for first
stage, 2 for second stage, etc.

Air-cooled Buildings.Fluid.HeatExchangers.DXCoils.AirCooled.SingleSpeed Single stage coil with constant compressor
speed
Air-cooled Buildings.Fluid. HeatExchangers.DXCoils.AirCooled. VariableSpeed  |Coil with variable speed compressor with lower

speed limit. If the control signal is below the
lower limit, the coil switches off. It switches on
if the control signal is above the lower limit plus
a hysteresis. By default, the minimum speed
ratio is minSpeRat and obtained from the coil
data record datCoi.minSpeRat. The
hysteresis is by default speDeaBanRat=0.05.

Water-cooled Buildings.Fluid. HeatExchangers.DXCoils.WaterCooled.MultiStage Coil with multiple operating stages, each stage
having a constant speed. Each stage has its
own performance curve, which may represent
the coil performance at different compressor
speed, or the coil performance as it switches
between cooling only, cooling with hot gas
reheat, or heating only.

Boolean signal; true if coil is
on.

Real number; 0 for coil off, 1 for
coil at full speed.

Integer; O for off, 1 for first
stage, 2 for second stage, etc.

Water-cooled Buildings.Fluid. HeatExchangers.DXCoils.WaterCooled.SingleSpeed  |Single stage coil with constant compressor
SP!

Documentation for CRAC

Boolean signal; true if coil is
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System Template Models

Example: Primary-only Chilled Water System
with Integrated Waterside Economizer
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Case Study

Cooling Towers
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Modelica System Model

Modelica: An equation-based
object-oriented modeling language
for multi-domain dynamic systems.
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Chiller with Two Compressors
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Condenser Water Loop Control

________________ Weather Conditions
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Condenser Water Loop Control
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Condenser Water Loop Control
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Condenser Water Loop Control
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Calibration Results

Cooling Coil
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Energy Saving: Opportunity 1

Cooling Coils are degraded.

Model Nominal UA (kW/K) Degraded UA (kW/K)

AHU 1 174 28.6

AHU 2 174 30.2
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Energy Saving: Opportunity 2
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Energy Saving: Opportunity 3

« Simultaneous heating and cooling in AHUs
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Optimization Strategies & Potential Savings

System Clean C_ooling Improved Cooling | Added Two-way Optimal Floor Air
Coils Mode Control Valve Temperature Setpoint
Baseline System
System 1 v
System 2 v
System 3 v
System 4 v v
System 5_1 v
System 5_2 v v
System 5_3 v v v
Annual Energy (MWh) T fi00r,set Savings
Baseline System 447 22.2 °C \
System 1 787 22.2 °C -76.1%
System 2 406 22.2 °C 9.2%
System 3 404 22.2 °C 9.6%
System 4 358 22.2 °C 16.9%
System 5_1 426 25.1°C 4.7%
System 5_2 381 25.1°C 14.8%
System 5_3 338 27.0 °C 24.4%
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Conclusion

1. Open source Modelica model for data center
cooling has been developed and released.

2. The case study on a real data center has shown
up to 24% energy saving with the proposed
energy retrofit solutions.

3. Owners have implemented the
solutions at their data center.
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