

Open Source Modelica Models for Data Center Cooling

Wangda Zuo¹, Yangyang Fu¹, Michael Wetter², Xu Han¹, Wei Tian³, James VanGilder³

1. University of Colorado Boulder

2. Lawrence Berkeley National Laboratory

3. Schneider Electric

Lawrence Berkeley National Laboratory

Outline

- Introduction
- Modelica Models for Data Center Cooling
- Case Study
- Conclusions

Typical Data Center Cooling

Airflow Management

Cooling System

Energy Efficient Data Center Cooling

Improving Data Center Energy Efficiency through End-to-End Cooling Modeling and Optimization, sponsored by DOE, https://www.colorado.edu/lab/sbs/doe-datacenter

Cooling System Models in Buildings Library

Created 81 new models in Modelica Buildings library in 2017

DX Cooled System Models (23 Models)

Component Models

Example: Water-cooled Variable Speed Computer Room Air Conditioner (CRAC)

variableSpeed

User's Guide

Information

This package contains models for direct evaporation cooling coils (DX coils).

The following six DX coil models are available

DX coil condenser	DX coil model	Properties	Control signal
Air-cooled	Buildings.Fluid.HeatExchangers.DXCoils.AirCooled.MultiStage	Coll with multiple operating stages, each stage having a constant speed. Each stage has its own performance curve, which may represent the coll performance at different compressor speed, or the coll performance as it switches between cooling only, cooling with hot gas reheat, or heating only.	Integer; 0 for off, 1 for first stage, 2 for second stage, etc.
Air-cooled	Buildings.Fluid.HeatExchangers.DXCoils.AirCooled.SingleSpeed	Single stage coil with constant compressor speed	Boolean signal; true if coil is on.
Air-cooled	Buildings.Fluid.HeatExchangers.DXCoils.AirCooled.VariableSpeed	Coil with variable speed compressor with lower speed limit. If the control signal is below the lower limit, the coil switches off. It switches on if the control signal is above the lower limit plus a hysteresis. By default, the minimum speed ratio is minSpeRat and obtained from the coil data record datCoi.minSpeRat. The hysteresis is by default speDeaBanRat-0.95.	Real number; 0 for coil off, 1 for coil at full speed.
Water-cooled	Buildings.Fluid.HeatExchangers.DXCoils.WaterCooled.MultiStage	Coil with multiple operating stages, each stage having a constant speed. Each stage has its own performance curve, which may represent the coil performance at different compressor speed, or the coil performance as it switches between cooling only, cooling with hot gas reheat, or heating only.	Integer; 0 for off, 1 for first stage, 2 for second stage, etc.
Water-cooled	Buildings.Fluid.HeatExchangers.DXCoils.WaterCooled.SingleSpeed	Single stage coil with constant compressor speed	Boolean signal; true if coil is on.

Documentation for CRAC Model

Diagram of CRAC Model

Example for validating CRAC Model

System Template Models

Example: Primary-only Chilled Water System with Integrated Waterside Economizer

Diagram of Modelica Implementation

Simulated monthly normalized run time of Free Cooling (FC), Partial Mechanical Cooling (PMC), Fully Mechanical Cooling (FMC) 7

Case Study

Location: Massachusetts

Climate Zone: 5A – cool and humid

IT Load: 316 kW

Cooling Load: 100 tons

Cooling System: chilled water system + airside economizer

Modelica System Model

Modelica: An equation-based object-oriented modeling language for multi-domain dynamic systems.

Chiller with Two Compressors

Calibration Results

Calibration error is within 8% for all component models, and within 6% for the system model.

Energy Saving: Opportunity 1

Cooling Coils are **degraded**.

Model	Nominal UA (kW/K)	Degraded UA (kW/K)
AHU 1	77.4	28.6
AHU 2	77.4	30.2

Energy Saving: Opportunity 2

 $T_{OA,dp,low} = T_{OA,dp,high} = 12.2$ °C $\delta T = 1.1$ °C

 $T_{SA,floor,set} = 22.2$ °C

Normalized Hours

FC: free cooling mode. Only economizers are on
PMC: partial mechanical cooling. Both economizer and chillers are on.
FMC: fully mechanical cooling. Only chillers are on.

Energy Saving: Opportunity 3

Simultaneous heating and cooling in AHUs

Energy (MWh)

Optimization Strategies & Potential Savings

System	Clean Cooling Coils	Improved Cooling Mode Control	Added Two-way Valve	Optimal Floor Air Temperature Setpoint
Baseline System				
System 1	\checkmark			
System 2		\checkmark		
System 3			\checkmark	
System 4		\checkmark	\checkmark	
System 5_1				\checkmark
System 5_2		\checkmark		\checkmark
System 5_3		\checkmark	\checkmark	\checkmark

System	Annual Energy (MWh)	T _{floor,set}	Savings
Baseline System	447	22.2 °C	١
System 1	787	22.2 °C	-76.1%
System 2	406	22.2 °C	9.2%
System 3	404	22.2 °C	9.6%
System 4	358	22.2 °C	16.9%
System 5_1	426	25.1 ℃	4.7%
System 5_2	381	25.1 ℃	14.8%
System 5_3	338	27.0 °C	24.4%

Conclusion

- 1. Open source Modelica model for data center cooling has been developed and released.
- 2. The case study on a real data center has shown up to 24% energy saving with the proposed energy retrofit solutions.
- 3. Owners have implemented the solutions at their data center.

This research was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies of the U.S. Department of Energy, under Award No. DE-EE0007688.

Y. Fu, W. Zuo, M. Wetter, J. W. VanGilder, P. Yang 2019. "<u>Equation-Based Object-Oriented Modeling and Simulation of Data Center</u> <u>Cooling Systems</u>." Energy and Buildings, 198, pp. 503-519.

Y. Fu, W. Zuo, M. Wetter, J. W. VanGilder, X. Han, D. Plamondon 2019. "Equation-Based Object-Oriented Modeling and Simulation for Data Center Cooling: A Case Study." Energy and Buildings, 186, pp. 108-125.